scholarly journals Reduced Glutathione Mediates Resistance to H2S Toxicity in Oral Streptococci

2016 ◽  
Vol 82 (7) ◽  
pp. 2078-2085 ◽  
Author(s):  
Xi Jia Ooi ◽  
Kai Soo Tan

ABSTRACTPeriodontal disease is associated with changes in the composition of the oral microflora, where health-associated oral streptococci decrease while Gram-negative anaerobes predominate in disease. A key feature of periodontal disease-associated anaerobes is their ability to produce hydrogen sulfide (H2S) abundantly as a by-product of anaerobic metabolism. So far, H2S has been reported to be either cytoprotective or cytotoxic by modulating bacterial antioxidant defense systems. Although oral anaerobes produce large amounts of H2S, the potential effects of H2S on oral streptococci are currently unknown. The aim of this study was to determine the effects of H2S on the survival and biofilm formation of oral streptococci. The growth and biofilm formation ofStreptococcus mitisandStreptococcus oraliswere inhibited by H2S. However, H2S did not significantly affect the growth ofStreptococcus gordoniiorStreptococcus sanguinis. The differential susceptibility of oral streptococci to H2S was attributed to differences in the intracellular concentrations of reduced glutathione (GSH). In the absence of GSH, H2S elicited its toxicity through an iron-dependent mechanism. Collectively, our results showed that H2S exerts antimicrobial effects on certain oral streptococci, potentially contributing to the decrease in health-associated plaque microflora.

2011 ◽  
Vol 80 (2) ◽  
pp. 620-632 ◽  
Author(s):  
Patricia I. Diaz ◽  
Zhihong Xie ◽  
Takanori Sobue ◽  
Angela Thompson ◽  
Basak Biyikoglu ◽  
...  

ABSTRACTCandida albicansis a commensal colonizer of the gastrointestinal tract of humans, where it coexists with highly diverse bacterial communities. It is not clear whether this interaction limits or promotes the potential ofC. albicansto become an opportunistic pathogen. Here we investigate the interaction betweenC. albicansand three species of streptococci from the viridans group, which are ubiquitous and abundant oral commensal bacteria. The ability ofC. albicansto form biofilms withStreptococcus oralis,Streptococcus sanguinis, orStreptococcus gordoniiwas investigated using flow cell devices that allow abiotic biofilm formation under salivary flow. In addition, we designed a novel flow cell system that allows mucosal biofilm formation under conditions that mimic the environment in the oral and esophageal mucosae. It was observed thatC. albicansand streptococci formed a synergistic partnership whereC. albicanspromoted the ability of streptococci to form biofilms on abiotic surfaces or on the surface of an oral mucosa analogue. The increased ability of streptococci to form biofilms in the presence ofC. albicanscould not be explained by a growth-stimulatory effect since the streptococci were unaffected in their growth in planktonic coculture withC. albicans. Conversely, the presence of streptococci increased the ability ofC. albicansto invade organotypic models of the oral and esophageal mucosae under conditions of salivary flow. Moreover, characterization of mucosal invasion by the biofilm microorganisms suggested that the esophageal mucosa is more permissive to invasion than the oral mucosa. In summary,C. albicansand commensal oral streptococci display a synergistic interaction with implications for the pathogenic potential ofC. albicansin the upper gastrointestinal tract.


2018 ◽  
Vol 200 (11) ◽  
pp. e00790-17 ◽  
Author(s):  
Christopher J. Rocco ◽  
Lauren O. Bakaletz ◽  
Steven D. Goodman

ABSTRACTThe oral cavity is home to a wide variety of bacterial species, both commensal, such as various streptococcal species, and pathogenic, such asPorphyromonas gingivalis, one of the main etiological agents of periodontal disease. Our understanding of how these bacteria ultimately cause disease is highly dependent upon understanding how they coexist and interact with one another in biofilm communities and the mechanisms by which biofilms are formed. Our research has demonstrated that the DNABII family of DNA-binding proteins are important components of the extracellular DNA (eDNA)-dependent matrix of bacterial biofilms and that sequestering these proteins via protein-specific antibodies results in the collapse of the biofilm structure and release of the resident bacteria. While the high degree of similarity among the DNABII family of proteins has allowed antibodies derived against specific DNABII proteins to disrupt biofilms formed by a wide range of bacterial pathogens, the DNABII proteins ofP. gingivalishave proven to be antigenically distinct, allowing us to determine if we can use anti-P. gingivalisHUβ antibodies to specifically target this species for removal from a mixed-species biofilm. Importantly, despite forming homotypic biofilmsin vitro,P. gingivalismust enter preexisting biofilmsin vivoin order to persist within the oral cavity. The data presented here indicate that antibodies derived against theP. gingivalisDNABII protein, HUβ, reduce by half the amount ofP. gingivalisorganisms entering into preexisting biofilm formed by four oral streptococcal species. These results support our efforts to develop methods for preventing and treating periodontal disease.IMPORTANCEPeriodontitis is one of the most prevalent chronic infections, affecting 40 to 50% of the population of the United States. The root cause of periodontitis is the presence of bacterial biofilms within the gingival space, withPorphyromonas gingivalisbeing strongly associated with the development of the disease. Periodontitis also increases the risk of secondary conditions and infections such as atherosclerosis and infective endocarditis caused by oral streptococci. To induce periodontitis,P. gingivalisneeds to incorporate into preformed biofilms, with oral streptococci being important binding partners. Our research demonstrates that targeting DNABII proteins with an antibody disperses oral streptococcus biofilm and preventsP. gingivalisentry into oral streptococcus biofilm. These results suggest potential therapeutic treatments for endocarditis caused by streptococci as well as periodontitis.


2019 ◽  
Vol 201 (11) ◽  
Author(s):  
Jessie E. Scott ◽  
George A. O’Toole

ABSTRACTThe streptococci are increasingly recognized as a core component of the cystic fibrosis (CF) lung microbiome, yet the role that they play in CF lung disease is unclear. The presence of theStreptococcus millerigroup (SMG; also known as the anginosus group streptococci [AGS]) correlates with exacerbation when these microbes are the predominant species in the lung. In contrast, microbiome studies have indicated that an increased relative abundance of streptococci in the lung, including members of the oral microflora, correlates with impacts on lung disease less severe than those caused by other CF-associated microflora, indicating a complex role for this genus in the context of CF. Recent findings suggest that streptococci in the CF lung microenvironment may influence the growth and/or virulence of other CF pathogens, as evidenced by increased virulence factor production byPseudomonas aeruginosawhen grown in coculture with oral streptococci. Conversely, the presence ofP. aeruginosacan enhance the growth of streptococci, including members of the SMG, a phenomenon that could be exacerbated by the fact that streptococci are not susceptible to some of the frontline antibiotics used to treatP. aeruginosainfections. Collectively, these studies indicate the necessity for further investigation into the role of streptococci in the CF airway to determine how these microbes, alone or via interactions with other CF-associated pathogens, might influence CF lung disease, for better or for worse. We also propose that the interactions of streptococci with other CF pathogens is an ideal model to study clinically relevant microbial interactions.


2014 ◽  
Vol 80 (23) ◽  
pp. 7212-7218 ◽  
Author(s):  
R. Huang ◽  
M. Li ◽  
M. Ye ◽  
K. Yang ◽  
X. Xu ◽  
...  

ABSTRACTStreptococcus gordoniiis a commensal species of human oral flora. It initiates dental biofilm formation and provides binding sites for later colonizers to attach to and generate mature biofilm. Smoking is the second highest risk factor for periodontal disease, and cigarette smoke extract has been reported to facilitatePorphyromonas gingivalis-S. gordoniidual-species biofilm formation. Our hypothesis is that nicotine, one of the most important and active components of tobacco, stimulatesS. gordoniimultiplication and aggregation. In the present study,S. gordoniiplanktonic cell growth (kinetic absorbance and CFU), biofilm formation (crystal violet stain and confocal laser scanning microscopy [CLSM]), aggregation with/without sucrose, and 11 genes that encode binding proteins or regulators of gene expression were investigated. Results demonstrated planktonic cell growth was stimulated by 1 to 4 mg/ml nicotine treatment. Biofilm formation was increased at 0.5 to 4 mg/ml nicotine. CLSM indicated bacterial cell mass was increased by 2 and 4 mg/ml nicotine, but biofilm extracellular polysaccharide was not significantly affected by nicotine. Cell aggregation was upregulated by 4, 8, and 16 mg/ml nicotine with sucrose and by 16 mg/ml nicotine without sucrose. Quantitative reverse transcriptase PCR indicatedS. gordoniiabpA,scaA,ccpA, andsrtAwere upregulated in planktonic cells by 2 mg/ml nicotine. In conclusion, nicotine stimulatesS. gordoniiplanktonic cell growth, biofilm formation, aggregation, and gene expression of binding proteins. Those effects may promote later pathogen attachment to tooth surfaces, the accumulation of tooth calculus, and the development of periodontal disease in cigarette smokers.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


2021 ◽  
Vol 13 (15) ◽  
pp. 8565
Author(s):  
Seyda Cavusoglu ◽  
Nurettin Yilmaz ◽  
Firat Islek ◽  
Onur Tekin ◽  
Halil Ibrahim Sagbas ◽  
...  

Various treatments are carried out in order to extend both the shelf life and storage life of fresh fruit and vegetables after harvest and among them non-toxic for humans, environmentally and economically friendly alternative treatments are gained more importance. In the current study, methyl jasmonate (MeJA), cytokinin, and lavender oil which are eco-friendly and safe for human health were applied on apricot fruit. The treated fruit were stored at 0 °C and 90–95% relative humidity for 25 days and catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) enzyme activities and lipid peroxidation of apricots after treatments were studied. According to the findings obtained from the study, it was observed that 5 ppm cytokinin and 1000 ppm lavender oil treatments of apricot fruit gave better APX and CAT enzyme activity, respectively. In addition, better SOD enzyme activity in fruit was obtained with MeJA+lavender oil treatments. As a result, it can be emphasized that the product quality of apricot fruit is preserved as both the eco-friendly application of MeJA, cytokinin, and lavender oil separately from each other and the treatment of combinations between these compounds activate the enzymatic antioxidant defense systems of apricot fruit after harvest.


2020 ◽  
Vol 100 (1) ◽  
pp. 82-89
Author(s):  
C.M.A.P. Schuh ◽  
B. Benso ◽  
P.A. Naulin ◽  
N.P. Barrera ◽  
L. Bozec ◽  
...  

Biofilm-mediated oral diseases such as dental caries and periodontal disease remain highly prevalent in populations worldwide. Biofilm formation initiates with the attachment of primary colonizers onto surfaces, and in the context of caries, the adhesion of oral streptococci to dentinal collagen is crucial for biofilm progression. It is known that dentinal collagen suffers from glucose-associated crosslinking as a function of aging or disease; however, the effect of collagen crosslinking on the early adhesion and subsequent biofilm formation of relevant oral streptococci remains unknown. Therefore, the aim of this work was to determine the impact of collagen glycation on the initial adhesion of primary colonizers such as Streptococcus mutans UA159 and Streptococcus sanguinis SK 36, as well as its effect on the early stages of streptococcal biofilm formation in vitro. Type I collagen matrices were crosslinked with either glucose or methylglyoxal. Atomic force microscopy nanocharacterization revealed morphologic and mechanical changes within the collagen matrix as a function of crosslinking, such as a significantly increased elastic modulus in crosslinked fibrils. Increased nanoadhesion forces were observed for S. mutans on crosslinked collagen surfaces as compared with the control, and retraction curves obtained for both streptococcal strains demonstrated nanoscale unbinding behavior consistent with bacterial adhesin-substrate coupling. Overall, glucose-crosslinked substrates specifically promoted the initial adhesion, biofilm formation, and insoluble extracellular polysaccharide production of S. mutans, while methylglyoxal treatment reduced biofilm formation for both strains. Changes in the adhesion behavior and biofilm formation of oral streptococci as a function of collagen glycation could help explain the biofilm dysbiosis seen in older people and patients with diabetes. Further studies are necessary to determine the influence of collagen crosslinking on the balance between acidogenic and nonacidogenic streptococci to aid in the development of novel preventive and therapeutic treatment against dental caries in these patients.


Genome ◽  
2011 ◽  
Vol 54 (10) ◽  
pp. 829-835 ◽  
Author(s):  
Mysore S. Ranjini ◽  
Ravikumar Hosamani ◽  
Muralidhara ◽  
Nallur B. Ramachandra

The evolution of karyotypically stabilized short-lived (SL) and long-lived (LL) cytoraces in the laboratory have been established and validated through our previous lifespan studies. In the present investigation, we examined the possible reason(s) for the differential longevity among selected members of SL and LL cytoraces, employing the well known paraquat (PQ) resistance bioassay. Exposure of these races to varying concentrations of PQ revealed relatively higher resistance among LL cytoraces than SL cytoraces, as evident by the lower incidence of mortality. Biochemical analysis for endogenous markers of oxidative stress revealed that LL-2 cytorace exhibited lower reactive oxygen species (ROS) and lipid peroxidation (LPO) levels, higher activity levels of superoxide dismutase (SOD), and coupled with higher levels of reduced glutathione (GSH) compared with the levels found in SL-2 cytorace. These findings suggest that the higher susceptibility of SL cytoraces to PQ challenge may be, at least in part, related to the higher endogenous levels of oxidative stress markers. Although the precise mechanisms responsible for the longer longevity among LL cytoraces of the nasuta–albomicans complex of Drosophila merits further investigation, our data suggest that the relatively longer lifespan may be related to the status of endogenous markers that renders them more resistant towards oxidative-stress-mediated lethality, as evident in the PQ assay.


2016 ◽  
Vol 198 (7) ◽  
pp. 1087-1100 ◽  
Author(s):  
Gursonika Binepal ◽  
Kamal Gill ◽  
Paula Crowley ◽  
Martha Cordova ◽  
L. Jeannine Brady ◽  
...  

ABSTRACTPotassium (K+) is the most abundant cation in the fluids of dental biofilm. The biochemical and biophysical functions of K+and a variety of K+transport systems have been studied for most pathogenic bacteria but not for oral pathogens. In this study, we establish the modes of K+acquisition inStreptococcus mutansand the importance of K+homeostasis for its virulence attributes. TheS. mutansgenome harbors four putative K+transport systems that included two Trk-like transporters (designated Trk1 and Trk2), one glutamate/K+cotransporter (GlnQHMP), and a channel-like K+transport system (Kch). Mutants lacking Trk2 had significantly impaired growth, acidogenicity, aciduricity, and biofilm formation. [K+] less than 5 mM eliminated biofilm formation inS. mutans. The functionality of the Trk2 system was confirmed by complementing anEscherichia coliTK2420 mutant strain, which resulted in significant K+accumulation, improved growth, and survival under stress. Taken together, these results suggest that Trk2 is the main facet of the K+-dependent cellular response ofS. mutansto environment stresses.IMPORTANCEBiofilm formation and stress tolerance are important virulence properties of caries-causingStreptococcus mutans. To limit these properties of this bacterium, it is imperative to understand its survival mechanisms. Potassium is the most abundant cation in dental plaque, the natural environment ofS. mutans. K+is known to function in stress tolerance, and bacteria have specialized mechanisms for its uptake. However, there are no reports to identify or characterize specific K+transporters inS. mutans. We identified the most important system for K+homeostasis and its role in the biofilm formation, stress tolerance, and growth. We also show the requirement of environmental K+for the activity of biofilm-forming enzymes, which explains why such high levels of K+would favor biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document