scholarly journals Characterization and Identification ofPediococcus Species Isolated from Forage Crops and Their Application for Silage Preparation

1999 ◽  
Vol 65 (7) ◽  
pp. 2901-2906 ◽  
Author(s):  
Yimin Cai ◽  
Sumio Kumai ◽  
Masuhiro Ogawa ◽  
Yoshimi Benno ◽  
Takashi Nakase

ABSTRACT Pediococcus species isolated from forage crops were characterized, and their application to silage preparation was studied. Most isolates were distributed on forage crops at low frequency. These isolates could be divided into three (A, B, and C) groups by their sugar fermentation patterns. Strains LA 3, LA 35, and LS 5 are representative isolates from groups A, B, and C, respectively. Strains LA 3 and LA 35 had intragroup DNA homology values above 93.6%, showing that they belong to the species Pediococcus acidilactici. Strain LS 5 belonged to Pediococcus pentosaceus on the basis of DNA-DNA relatedness. All three of these strains and strain SL 1 (Lactobacillus casei, isolated from a commercial inoculant) were used as additives to alfalfa and Italian ryegrass silage preparation at two temperatures (25 and 48°C). When stored at 25°C, all of the inoculated silages were well preserved and exhibited significantly (P < 0.05) reduced fermentation losses compared to that of their control in alfalfa and Italian ryegrass silages. When stored at 48°C, silages inoculated with strains LA 3 and LA 35 were also well preserved, with a significantly (P < 0.05) lower pH, butyric acid and ammonia-nitrogen content, gas production, and dry matter loss and significantly (P < 0.05) higher lactate content than the control, but silages inoculated with LS 5 and SL 1 were of poor quality. P. acidilactici LA 3 and LA 35 are considered suitable as potential silage inoculants.

1998 ◽  
Vol 64 (8) ◽  
pp. 2982-2987 ◽  
Author(s):  
Yimin Cai ◽  
Yoshimi Benno ◽  
Masuhiro Ogawa ◽  
Sadahiro Ohmomo ◽  
Sumio Kumai ◽  
...  

ABSTRACT Lactobacillus spp. from an inoculant andWeissella and Leuconostoc spp. from forage crops were characterized, and their influence on silage fermentation was studied. Forty-two lactic acid-producing cocci were obtained from forage crops and grasses. All isolates were gram-positive, catalase-negative cocci that produced gas from glucose, and produced more than 90% of their lactate in the d-isomer form. These isolates were divided into groups A and B by sugar fermentation patterns. Two representative strains from the two groups, FG 5 and FG 13, were assigned to the species Weissella paramesenteroides and Leuconostoc pseudomesenteroides, respectively, on the basis of DNA-DNA relatedness. Strains FG 5, FG 13, and SL 1 (Lactobacillus casei), isolated from a commercial inoculant, were used as additives to alfalfa and Italian ryegrass silage preparations. Lactic acid bacterium counts were higher in all additive-treated silages than in the control silage at an early stage of ensiling. During silage fermentation, inoculation with SL 1 more effectively inhibited the growth of aerobic bacteria and clostridia than inoculation with strain FG 5 or FG 13. SL 1-treated silages stored well. However, the control and FG 5- and FG 13-treated silages had a significantly (P < 0.05) higher pH and butyric acid and ammonia nitrogen contents and significantly (P < 0.05) lower lactate content than SL 1-treated silage. Compared with the control silage, SL 1 treatments reduced the proportion ofd-(−)-lactic acid, gas production, and dry matter loss in two kinds of silage, but the FG 5 and FG 13 treatments gave similar values in alfalfa silages and higher values (P < 0.05) in Italian ryegrass silage. The results confirmed that heterofermentative strains of W. paramesenteroides FG 5 andL. pseudomesenteroides FG 13 did not improve silage quality and may cause some fermentation loss.


Author(s):  
R.J. Densley ◽  
G.M. Austin ◽  
I.D. Williams ◽  
R. Tsimba ◽  
G.O. Edmeades

Trade-offs in dry matter (DM) and metabolisable energy (ME) between combinations of three maize silage hybrids varying in maturity from 100-113 CRM and six winter forage options were investigated in a Waikato farmer's field over 2 years. Winter crops were triticale, cut once; oats grazed 1-2 times; and Tama and Feast II Italian ryegrass, each cut or grazed 2-3 times. Greatest DM and ME production (38.9 t/ha; 396 GJ/ha) was from a 113 CRM hybrid followed by a single-cut triticale crop. The most economical sources of DM and ME were obtained from a 100 CRM maize hybrid plus grazed oats (11.8 c/ kg; 1.12 c/MJ), while the cheapest ME source among cut winter forages was a 113 CRM maize hybrid + triticale (1.18 c/MJ). Reliable annual silage production of 30 t DM/ha and 330 GJ ME/ha (or 3000 kg MS/ha) is possible using a late maturing maize hybrid combined with a winter forage crop such as triticale, although the low feed value of the triticale may limit its use as feed for milking cows. Keywords: Italian ryegrass, oats, maize silage, supplements, triticale, winter forage crops


2021 ◽  
Author(s):  
Ermeng Zhao ◽  
Jian Hou ◽  
Yunkai Ji ◽  
Lu Liu ◽  
Yongge Liu ◽  
...  

Abstract Natural gas hydrate is widely distributed in the permafrost and marine deposits, and is regarded as an energy resource with great potential. The low-frequency electric heating assisted depressurization (LF-EHAD) has been proven to be an efficient method for exploiting hydrate sediments, which involves complex multi-physics processes, i.e. current conduction, multiphase flow, chemical reaction and heat transfer. The physical properties vary greatly in different hydrate sediments, which may profoundly affect the hydrate decomposition in the LF-EHAD process. In order to evaluate the influence of hydrate-bearing sediment properties on the gas production behavior and energy utilization efficiency of the LF-EHAD method, a geological model was first established based on the data of hydrate sediments in the Shenhu Area. Then, the influence of permeability, porosity, thermal conductivity, specific heat capacity, hydrate saturation and hydrate-bearing layer (HBL) thickness on gas production behavior is comprehensively analyzed by numerical simulation method. Finally, the energy efficiency ratio under different sediment properties is compared. Results indicate that higher gas production is obtained in the high-permeability hydrate sediments during depressurization. However, after the electric heating is implemented, the gas production first increases and then tends to be insensitive as the permeability decreases. With the increasing of porosity, the gas production during depressurization decreases due to the low effective permeability; while in the electric heating stage, this effect is reversed. High thermal conductivity is beneficial to enhance the heat conduction, thus promoting the hydrate decomposition. During depressurization, the gas production is enhanced with the increase of specific heat capacity. However, more heat is consumed to increase the reservoir temperature during electric heating, thereby reducing the gas production. High hydrate saturation is not conducive to depressurization because of the low effective permeability. After electric heating, the gas production increases significantly. High HBL thickness results in a higher gas production during depressurization, while in the electric heating stage, the gas production first increases and then remains unchanged with the increase of thickness, due to the limited heat supply. The comparison results of energy efficiency suggest that electric heating is more advantageous for hydrate sediments with low permeability, high porosity, high thermal conductivity, low specific heat capacity, high hydrate saturation and high HBL thickness. The findings in this work can provide a useful reference for evaluating the application of the LF-EHAD method in gas hydrate sediments.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 166
Author(s):  
Pichad Khejornsart ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

Alternative feed sources can be utilized to reduce enteric methane (CH4) emissions, a major greenhouse gas that contributes to global warming. This study aimed to evaluate the potential use of tropical plants to improve digestibility, reduce protozoal populations, improve rumen fermentation, and minimize methane emissions from ruminants. The plants considered herein grow in tropical climates, are easily accessible in large quantities, and are directly related to human food production. Nine plants that grow naturally in tropical climates were assessed. Plant supplementation substantially enhanced accumulative gas production at 24 h (p < 0.05). The apparent organic matter digestibility (AOMDvt) of the diet was not affected by five of the nine plants. With the addition of the plant material, ammonia nitrogen concentrations were reduced by up to 47% and methane concentrations were reduced by 54%. Five of the nine plant materials reduced methane production in terms of CH4/dry matter and CH4/digestibility of the organic matter by 15–35% and 8–24%, respectively. In conclusion, supplementation with plants with high tannin contents was shown to be a viable strategy for improving rumen fermentation, reducing protozoal populations, and limiting methane emissions. In this regard, the leaves of Piper sarmentosum, Acmella oleracea, Careya arborea, and Anacardium occidentale were especially promising.


1990 ◽  
Vol 50 (2) ◽  
pp. 253-260 ◽  
Author(s):  
J. G. Buchanan-Smith

ABSTRACTTo separate ingestive factors involving palatability from post-ingestive factors responsible for forage intake being depressed by ensiling, silages were evaluated using sham-fed animals. Protocol for all experiments was to formulate low dry matter (DM) silages from a high DM lucerne silage reconstituted with either water, solutions containing constituents commonly found in silage, or extracts of low DM silage. Solutions of silage constituents were adjusted before reconstitution to a pH typical of silage. Tests were performed by offering silages one at a time once daily to oesophageal fistulated sheep, maintained on lucerne hay, but starved for 5 h prior to the test. Intake was measured over 30 min. Sheep were adapted to intermediate levels of each test ingredient(s) before experiments were done to evaluate effects of four to five levels of each ingredient using Latin-square designs. Animals were sham fed during both periods of adaptation and of testing ingredient levels. Mean of 30-min intakes for control silages was 573 g DM. Lactic and acetic acids added together, to levels of 53·2 and 35·4 g/kg, respectively, enhanced intake with a linear response due to level (P < 0·05). Acetic acid added by itself to 88·0 g/kg depressed intake with a linear response due to level (P < 0·05) in which 10 g/kg added acetic acid depressed 30-min intake by 13·5 g. Acetic and butyric acids added together to levels of 36·2 and 54·4 g/kg respectively, were without effect as was ammonia added to 3·8 g/kg as ammonia nitrogen (N). A mixture of free amino acids added to a level of 9·2 g amino-N per kg was without effect, but at a level of 13·8 g/kg, intake was depressed to proportionately 0·75 of the control. A mixture of two amines and gamma amino butyric acid added to a level of 4·6 g N per kg caused a quadratic response (P < 005) in which intermediate levels enhanced intake but the highest level was without effect. An extract from good-quality silage had no effect on intake and that from a poor-quality silage enhanced intake in a linear manner (P < 0·05). These data indicate that elevation of acetic acid in silage without increases in amounts of other constituents decreased intake of silage through an effect on palatability. This conclusion modifies interpretation on the significance of palatability, determined from studies of ingestive behaviour of ruminants, as a factor to explain reduced intake of sheep given silage.


Author(s):  
H.J. Gilbert ◽  
J.E. Rixon ◽  
R.S. Sharp ◽  
A.G. O'Donnell ◽  
G.P. Hazlewood

Silage inoculants consisting of primarily Lactobacillus plantarum, are widely used to ensure that lactic acid bacteria dominate the fermentation of water soluble carbohydrates (WSC) during the ensilage process. Previous studies have shown that the supplementation of ensiled forage crops with cellulases can also improve the quality of silage through i) increasing the generation of WSC, and therefore ensuring an adequate supply of substrate for L. plantanim; ii) Partial hydrolysis of the plant cell wall increasing the rate of cellulose hydrolysis within the rumen. From the above discussion it is apparent that the use of an L.plantarum strain, with the capacity to hydrolyse cellulose, could be beneficial in the ensiling process. No celluloytic lactic bacterium has been isolated from microbial ecosystems. However, the advent of recombinant DNA technology affords us the possibility of engineering a cellulolytic derivative of L. plantarum. This report describes progress towards this objective.


2019 ◽  
Vol 64 (No. 8) ◽  
pp. 352-360
Author(s):  
Jiu Yuan ◽  
Xinjie Wan

The associative effects (AE) between concentrate (C), peanut shell (P) and alfalfa (A) were investigated by means of an automated gas production (GP) system. The C, P and A were incubated alone or as 40 : 60 : 0, 40 : 45 : 15, 40 : 30 : 30, 40 : 15 : 45, 40 : 0 : 60 and 30 : 70 : 0, 30 : 55 : 15, 30 : 40 : 30, 30 : 25 : 45, 30 : 10 : 60, 30 : 0 : 70 mixtures where the C : roughage (R) ratios were 40 : 60 and 30 : 70. Samples (0.2000 ± 0.0010 g) of single feeds or mixtures were incubated for 96 h in individual bottles (100 ml) with 30 ml of buffered rumen fluid. GP parameters were analysed using a single exponential equation. After incubation, the residues were used to determine pH, dry matter digestibility (DMD), organic matter digestibility (OMD), volatile fatty acids (VFA) and ammonia nitrogen (NH<sub>3</sub>-N) of the incubation fluid, and their single factor AE indices (SFAEI) and multiple-factors AE indices (MFAEI) were determined. The results showed that group of 30 peanut shell had higher SFAEI of GP<sub>48 h</sub>, DMD, OMD and total volatile fatty acids (p &lt; 0.05) and MFAEI (p &lt; 0.05) than groups 60, 45 and 0 when C : R was 40 : 60. The group of 10 peanut shell showed higher SFAEI of GP<sub>48 h</sub>, DMD and OMD (p &lt; 0.05) than groups 70, 55 and 40 and MFAEI (p &lt; 0.01) when C : R was 30 : 70. It is concluded that optimal SFAEI and MFAEI were obtained when the C : P : A ratios were 40 : 30 : 30 and 30 : 10 : 60.


1999 ◽  
Vol 132 (3) ◽  
pp. 313-321 ◽  
Author(s):  
H. P. S. MAKKAR ◽  
E. M. AREGHEORE ◽  
K. BECKER

Saponins of Quillaja saponaria bark and the water extract obtained on homogenization of Yucca schidigera plants were used during urea-ammoniation to reduce ammonia loss. In Expt 1, chaffed wheat straw (2–5 cm length) was urea-ammoniated (50 g kg−1 urea, 400 g kg−1 moisture) for 25 days at 37°C with and without Quillaja saponins (QS) or Yucca plant homogenate, YPH (corresponding to 1 and 2 g kg−1Yucca powder). The crude protein (CP) content of untreated straw was 34 g kg−1. After 25 days, CP values of 90 g kg−1 (urea; no saponin), 82 and 86 g kg−1 (urea+QS at 1 and 2 g kg−1) and 102 and 92 g kg−1 (urea+YPH at 1 and 2 g kg−1) were obtained. The ammonia-nitrogen bound (as percentage of urea-nitrogen added) to straw after the treatment was 39 (urea; no saponin), 33 and 36 (urea+QS at 1 and 0·2 g kg−1), and 47 and 40 (urea+YPE at 1 and 2 g kg−1). As the extent of ammonia bound to straw was higher with Yucca plant powder, especially at 1 g kg−1, Yucca plant powder at 0·75 and 1 g kg−1 was used in Expt 2. In Expt 1, the Yucca plant extract was used after homogenization of the Yucca plant powder, which is not feasible at farm level. Therefore, two simpler approaches (overnight soaking of the powder in water (Yucca powder extracted, YPE) and mixing of Yucca powder with the straw followed by urea-ammoniation (Yucca powder, YP) were used besides homogenization. Otherwise, conditions for the urea-ammoniation treatment were similar to those in Expt 1. The ammonia–nitrogen bound (as percentage of urea-nitrogen added) to the straw varied from 47 to 54% in the presence of the Yucca plant powder, which was substantially higher than that observed in its absence (38%). The ammonia-binding efficiency of Yucca plant powder to the straw was highest at 1 g kg−1. Among the three methods tried, addition of the Yucca powder to straw followed by treatment with urea was the easiest, and the binding efficiency was similar to that observed when using the powder after homogenization. In both experiments, the true dry matter- and NDF-digestibilities, calculated organic matter digestibility and metabolizable energy, as well as rate and potential extent of gas production, were significantly higher (P<0·05) in the treated straw than in the untreated straw. These values were affected neither by the source of the saponins nor the manner in which the Yucca powder was applied.


1979 ◽  
Vol 42 (3) ◽  
pp. 525-534 ◽  
Author(s):  
J. C. Macrae ◽  
J. A. Milne ◽  
S. Wilson ◽  
Angela M. Spence

1. In two experiments, the sites of digestion of non-ammonia nitrogen (NAN) and the amounts of urea N recycled to the rumen were measured in mature wether sheep given diets of indigenous hill herbage (Agrostis–Festucaand heather).2. Duodenal and ileal flow values were obtained using103Ru-phenanthroline and51Cr-EDTA markers in animals prepared with simple (T-shaped) cannuals. Amounts of urea N recycled to the rumen were estimated from measurements of the transfer of plasma urea carbon into rumen bicarbonate and the production rate of rumen bicarbonate using14C-labelled urea and bicarbonate respectively.3. The flows of NAN at the duodenum and ileum were linearly related to the intake of herbage (P< 0.001). There was a net gain of non-ammonia N anterior to the duodenum on both diets (at an intake of 460 g organic matter (OM)/d, 3.7 g NAN/d onAgrostis–Festucaand 3.3 g NAN/d on heather).4. Net digestibility of NAN entering the small intestine was within a normal range on theAgrostis–Festuca(0.58 at 460 g OM intake) diet but low on the heather diet (0.043 at 460 g OM intake).5. It was calculated that at 460 g OM intake only 0.9 and 1.1 g/d respectively of the duodenal NAN on theAgrostis-Festucaand heather diets could have been derived from urea-N recycled to the rumen. Thus 2.8 g and 2.2 g/d had to be accounted for as non-urea endogenous NAN.


1991 ◽  
Vol 71 (3) ◽  
pp. 781-791 ◽  
Author(s):  
A. H. Fredeen ◽  
R. E. McQueen ◽  
D. A. Browning

Timothy (trial 1) and alfalfa (trial 2) were inoculated at ensiling (33–37% dry matter (DM)) in concrete-stave, vertical silos with a culture of lactic acid bacteria (Lab; Lactobacillus plantarum and Pediococcus acidilactici) alone, or with additional nutrients and enzymes (Supersile®, Biotal Canada, Calgary, AB), and compared with an untreated (control) silage. Colony forming units of Lab, ammonia nitrogen (NH3-N), lactic acid and volatile fatty acid concentrations, pH, DM disappearance and temperature changes during ensiling were measured to assess silage quality. Nine dairy cows in mid-lactation (alfalfa) and nine cows in late lactation (timothy) were used to evaluate inoculants in repeated Latin square designs. Timothy silage that had been inoculated with Supersile or Lab had lower concentrations of acetic and butyric acid (P < 0.05) compared with the control. No other effects on silage quality were observed, and cow performance was not affected by using inoculants on either timothy or alfalfa in this study. Enzymes added in this experiment were not beneficial. Key words: Silage, inoculants, alfalfa, timothy, dairy, cow


Sign in / Sign up

Export Citation Format

Share Document