scholarly journals Gut microbiota: The emerging link to lung homeostasis and disease

Author(s):  
An Zhou ◽  
Yuanyuan Lei ◽  
Li Tang ◽  
Shiping Hu ◽  
Min Yang ◽  
...  

The gut microbiota plays a crucial role in the development of the immune system and confers benefits or disease susceptibility to the host. Emerging studies have indicated that the gut microbiota could affect pulmonary health and disease through cross-talk between the gut microbiota and the lungs. Gut microbiota dysbiosis could lead to acute or chronic lung disease, such as asthma, tuberculosis and lung cancer. In addition, the composition of the gut microbiota may be associated with different lung diseases, the prevalence of which also vary by age. Modulation of the gut microbiota through short-chain fatty acids, probiotics and micronutrients may present potential therapeutic strategies to protect against lung diseases. In this review, we will provide an overview of the cross-talk between the gut microbiota and the lungs as well as elucidate the underlying pathogenesis or potential therapeutic strategies of some lung diseases from the point of view of the gut microbiota.

2021 ◽  
Vol 15 (2) ◽  
pp. 137-148
Author(s):  
Alina M Rüb ◽  
Anastasia Tsakmaklis ◽  
Stefanie K Gräfe ◽  
Marie-Christine Simon ◽  
Maria JGT Vehreschild ◽  
...  

The association of gut microbiota dysbiosis with various human diseases is being substantiated with increasing evidence. Metabolites derived from both, microbiota and the human host play a central role in disease susceptibility and disease progression by extensively modulating host physiology and metabolism. Several of these metabolites have the potential to serve as diagnostic biomarkers for monitoring disease states in conjunction with intestinal microbiota dysbiosis. In this narrative review we evaluate the potential of trimethylamine-N-oxide, short-chain fatty acids, 3-indoxyl sulfate, p-cresyl sulfate, secondary bile acids, hippurate, human β-defensin-2, chromogranin A, secreted immunoglobulins and zonulin to serve as biomarkers for metabolite profiling and diagnostic suitability for dysbiosis and disease.


2019 ◽  
Vol 10 (6) ◽  
pp. 659-666 ◽  
Author(s):  
Yumi Sato ◽  
Kenichi Sakurai ◽  
Hiromi Tanabe ◽  
Tamotsu Kato ◽  
Yumiko Nakanishi ◽  
...  

AbstractMaternal gut microbiota is thought to be one of the important factors in the developmental origins of health and disease (DOHaD) concept, but the effects of maternal gut microbiota on foetal growth are not well known. In this study, the association between maternal gut microbiota and foetal growth was investigated. Maternal and newborn information, as well as stool samples at the third trimester of pregnancy, were obtained from 51 mother–newborn pairs from the Chiba study of Mother and Child Health (C-MACH). Gut microbiota was analysed by 16S rRNA sequencing of stool samples and short-chain fatty acids (SCFAs) in stool were analysed by gas chromatography-tandem mass spectrometry. After adjustment for covariates, it was found that maternal gut microbial diversity had a positive association with head circumference in newborn males (Chao 1: adjusted r = 0.515, p = 0.029). Genus Parabacteroides and genus Eggerthella showed negative associations with newborn head circumference and weight, respectively in males (genus Parabacteroides: adjusted r = −0.598, p = 0.009, genus Eggerthella: adjusted r = −0.481, p = 0.043). On the other hand, genus Streptococcus showed a negative association with newborn height in females (adjusted r = −0.413, p = 0.040). In addition, hexanoate was involved in the association between maternal gut microbiota and newborn anthropometrics in the univariate analysis, but not in the multivariate analysis. These data suggest that maternal gut microbiota has sex-specific effects on foetal growth. Maternal gut microbiota is an important factor for optimal intrauterine growth.


Author(s):  
Katarina Bojović ◽  
Ður -d ica Ignjatović ◽  
Svetlana Soković Bajić ◽  
Danijela Vojnović Milutinović ◽  
Mirko Tomić ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Yang Guo ◽  
Xiaosu Li ◽  
Zhijian Wang ◽  
Bo Yu

Introduction: Hypertension is one of the major risk factors to human health and human studies on association between gut microbiota and hypertension or blood pressure have received increased attention. In the present study, we aim to evaluate gut microbiota dysbiosis in human hypertension using a method of systematic review.Methods: PubMed, EMBASE, and Web of Science databases were searched until March 2021 to identify eligible articles. Additional articles were also identified by searching specific authors in this field. Inclusion criteria were observational studies based on stool samples with hypertension group and control group. Newcastle-Ottawa quality assessment scale (NOS) was used to assess the quality of the included studies. PROSPERO registration number: CRD42020212219.Results: A total of 17 studies enrolling 9,085 participants were included. Fifteen of the enrolled studies showed good quality and two studies showed fair quality based on NOS. We found alpha diversity in hypertension decreased significantly and microbial structure can be separated compared with control groups. Gut microbiota of hypertension showed depletion of short chain fatty acids (SCFAs) producers and over-growth of some Proteobacteria and Bacteroidetes members. Up-regulation of lipopolysaccharide biosynthesis, phosphotransferase system, ABC transporters, etc. and down-regulation of some amino acid metabolism, etc. in hypertension were reported. Fecal SCFAs levels increased and plasma SCFAs levels decreased in hypertension. Stronger microbial interactions in hypertension were seen.Conclusion: In conclusion, gut microbiota dysbiosis was observed in hypertension, including decreased diversity, altered microbial structure, compositional change of taxa, alterations of microbial function, nutritional and immunological factors, and microbial interactions. Poor absorption and high excretion of SCFAs may play an important role in the pathogenesis of hypertension. These findings may provide insights into etiology study and new microbial-based therapies of hypertension.Systematic Review Registration: PROSPERO database, identifier CRD42020212219.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhipeng Zheng ◽  
Baohong Wang

Diverse liver diseases undergo a similar pathophysiological process in which liver regeneration follows a liver injury. Given the important role of the gut-liver axis in health and diseases, the role of gut microbiota-derived signals in liver injury and regeneration has attracted much attention. It has been observed that the composition of gut microbiota dynamically changes in the process of liver regeneration after partial hepatectomy, and gut microbiota modulation by antibiotics or probiotics affects both liver injury and regeneration. Mechanically, through the portal vein, the liver is constantly exposed to gut microbial components and metabolites, which have immense effects on the immunity and metabolism of the host. Emerging data demonstrate that gut-derived lipopolysaccharide, gut microbiota-associated bile acids, and other bacterial metabolites, such as short-chain fatty acids and tryptophan metabolites, may play multifaceted roles in liver injury and regeneration. In this perspective, we provide an overview of the possible molecular mechanisms by which gut microbiota-derived signals modulate liver injury and regeneration, highlighting the potential roles of gut microbiota in the development of gut microbiota-based therapies to alleviate liver injury and promote liver regeneration.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Miguel A. Ortega ◽  
Miguel Angel Alvarez-Mon ◽  
Cielo García-Montero ◽  
Oscar Fraile-Martinez ◽  
Luis G. Guijarro ◽  
...  

The gut microbiota is a complex and dynamic ecosystem essential for the proper functioning of the organism, affecting the health and disease status of the individuals. There is continuous and bidirectional communication between gut microbiota and the host, conforming to a unique entity known as “holobiont”. Among these crosstalk mechanisms, the gut microbiota synthesizes a broad spectrum of bioactive compounds or metabolites which exert pleiotropic effects on the human organism. Many of these microbial metabolites can cross the blood–brain barrier (BBB) or have significant effects on the brain, playing a key role in the so-called microbiota-gut-brain axis. An altered Microbiota-Gut-Brain (MGB) axis is a major characteristic of many neuropsychiatric disorders, including major depressive disorder (MDD). Significative differences between gut eubiosis and dysbiosis in mental disorders like MDD with their different metabolite composition and concentrations are being discussed. In the present review, the main microbial metabolites (short-chain fatty acids -SCFAs-, bile acids, amino acids, tryptophan -trp- derivatives, and more), their signaling pathways and functions will be summarized to explain part of MDD pathophysiology. Conclusions from promising translational approaches related to microbial metabolome will be addressed in more depth to discuss their possible clinical value in the management of MDD patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Quanren Pan ◽  
Fengbiao Guo ◽  
Yanyan Huang ◽  
Aifen Li ◽  
Shuxian Chen ◽  
...  

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that was traditionally thought to be closely related to genetic and environmental risk factors. Although treatment options for SLE with hormones, immunosuppressants, and biologic drugs are now available, the rates of clinical response and functional remission of these drugs are still not satisfactory. Currently, emerging evidence suggests that gut microbiota dysbiosis may play crucial roles in the occurrence and development of SLE, and manipulation of targeting the gut microbiota holds great promises for the successful treatment of SLE. The possible mechanisms of gut microbiota dysbiosis in SLE have not yet been well identified to date, although they may include molecular mimicry, impaired intestinal barrier function and leaky gut, bacterial biofilms, intestinal specific pathogen infection, gender bias, intestinal epithelial cells autophagy, and extracellular vesicles and microRNAs. Potential therapies for modulating gut microbiota in SLE include oral antibiotic therapy, fecal microbiota transplantation, glucocorticoid therapy, regulation of intestinal epithelial cells autophagy, extracellular vesicle-derived miRNA therapy, mesenchymal stem cell therapy, and vaccination. This review summarizes novel insights into the mechanisms of microbiota dysbiosis in SLE and promising therapeutic strategies, which may help improve our understanding of the pathogenesis of SLE and provide novel therapies for SLE.


2020 ◽  
Vol 21 (14) ◽  
pp. 4834
Author(s):  
Maria Luca ◽  
Siriporn C. Chattipakorn ◽  
Sirawit Sriwichaiin ◽  
Antonina Luca

Evidence suggests an association between an altered gut microbiota (dysbiosis), cognitive performance and behaviour. This paper provides an overview of the current literature regarding the cognitive-behavioural correlates of dysbiosis, with special attention on the clinical and biochemical mechanisms underlying the association between dysbiosis, cognition (mild cognitive impairment and dementia) and behaviour (depression, schizophrenia, addiction). After providing an overview of the evidence, the review discusses the molecular aspects that could account for the cognitive-behavioural correlates of dysbiosis. Shedding light on this topic could provide insights regarding the pathogenesis of these burdening neuropsychiatric disorders and even suggest future therapeutic strategies.


2020 ◽  
Vol 8 (4) ◽  
pp. 573 ◽  
Author(s):  
Mirco Vacca ◽  
Giuseppe Celano ◽  
Francesco Maria Calabrese ◽  
Piero Portincasa ◽  
Marco Gobbetti ◽  
...  

The complex polymicrobial composition of human gut microbiota plays a key role in health and disease. Lachnospiraceae belong to the core of gut microbiota, colonizing the intestinal lumen from birth and increasing, in terms of species richness and their relative abundances during the host’s life. Although, members of Lachnospiraceae are among the main producers of short-chain fatty acids, different taxa of Lachnospiraceae are also associated with different intra- and extraintestinal diseases. Their impact on the host physiology is often inconsistent across different studies. Here, we discuss changes in Lachnospiraceae abundances according to health and disease. With the aim of harnessing Lachnospiraceae to promote human health, we also analyze how nutrients from the host diet can influence their growth and how their metabolites can, in turn, influence host physiology.


Sign in / Sign up

Export Citation Format

Share Document