scholarly journals Genetic Locus Required for Antigenic Maturation of Rhizobium etli CE3 Lipopolysaccharide

2001 ◽  
Vol 183 (20) ◽  
pp. 6054-6064 ◽  
Author(s):  
Dominik M. Duelli ◽  
Andrea Tobin ◽  
Jodie M. Box ◽  
V. S. Kumar Kolli ◽  
Russell W. Carlson ◽  
...  

ABSTRACT Rhizobium etli modifies lipopolysaccharide (LPS) structure in response to environmental signals, such as low pH and anthocyanins. These LPS modifications result in the loss of reactivity with certain monoclonal antibodies. The same antibodies fail to recognize previously isolated R. etli mutant strain CE367, even in the absence of such environmental cues. Chemical analysis of the LPS in strain CE367 demonstrated that it lacked the terminal sugar of the wild-type O antigen, 2,3,4-tri-O-methylfucose. A 3-kb stretch of DNA, designated as lpe3, restored wild-type antigenicity when transferred into CE367. From the sequence of this DNA, five open reading frames were postulated. Site-directed mutagenesis and complementation analysis suggested that the genes were organized in at least two transcriptional units, both of which were required for the production of LPS reactive with the diagnostic antibodies. Growth in anthocyanins or at low pH did not alter the specific expression ofgusA from the transposon insertion of mutant CE367, nor did the presence of multiple copies of lpe3 situated behind a strong, constitutive promoter prevent epitope changes induced by these environmental cues. Mutations of the lpe genes did not prevent normal nodule development on Phaseolus vulgaris and had very little effect on the occupation of nodules in competition with the wild-type strain.

1999 ◽  
Vol 67 (2) ◽  
pp. 643-652 ◽  
Author(s):  
Cindy Grove Arvidson ◽  
Risa Kirkpatrick ◽  
Manon T. Witkamp ◽  
Jason A. Larson ◽  
Christel A. Schipper ◽  
...  

ABSTRACT In an effort to identify potential cytotoxins expressed byNeisseria gonorrhoeae, we have identified a locus that, when mutated in the gonococcus, results in a significant increase in toxicity of the strain to human fallopian tube organ cultures (HFTOC). This locus, gly1, contains two open reading frames (ORFs) which are likely cotranscribed. ORF1 encodes a polypeptide of 17.8 kDa with a signal sequence that is recognized and processed inEscherichia coli and N. gonorrhoeae. The 15.6-kDa processed polypeptide has been observed in membrane fractions and filtered spent media from cultures of E. coli expressing gly1 and in outer membrane preparations of wild-type N. gonorrhoeae. The gly1 locus is not essential for bacterial survival, and it does not play a detectable role in epithelial cell adhesion, invasion, or intracellular survival. However, agly1 null mutant causes much more damage to fallopian tube tissues than its isogenic wild-type parent. A strain complemented intrans for the gly1 mutation showed a level of toxicity to HFTOC similar to the level elicited by the wild-type parent. Taken together, these results indicate an involvement of the gly1 locus in the toxicity of N. gonorrhoeae to human fallopian tubes.


2007 ◽  
Vol 53 (8) ◽  
pp. 992-999
Author(s):  
Sanjay Nag ◽  
Keya Chaudhuri

In Vibrio cholerae , ToxR transcriptionally activates a number of virulence genes in response to various environmental signals. In the present study, transcription profiling by macroarray was carried out with 13 pairs of genes, one copy of which is present in each chromosome under ToxR-inducing (pH 6.5, osmolarity 66 mmol/L, 30 °C) and ToxR-repressing (pH 8.5, osmolarity 300 mmol/L, 37 °C) conditions followed by high pH (8.5) and low pH (6.5) conditions to eliminate pH effect. The genes dacAII, tagEII, secDII, pmmI, pmmII, and immII showed increased expression in the ToxR-inducing conditions, but not at low pH, suggesting that the expression of these genes might be regulated by ToxR. The expression of pmmII, dacAII, tagEII, secDII, and immII genes decreased significantly in the toxR insertion mutant as determined by RT–PCR, whereas the expression of the chromosome I copy of pmm increased in toxR mutant compared with wild-type cells. Thus, the chromosome II copy of these genes, which show increased expression under ToxR-inducing conditions, are all regulated by ToxR in V. cholerae, whereas the chromosome I copy of pmm may be regulated by other factors under ToxR-inducing conditions.


2006 ◽  
Vol 74 (5) ◽  
pp. 2777-2786 ◽  
Author(s):  
Jessica L. Rock ◽  
David R. Nelson

ABSTRACT Vibrio anguillarum is a causative agent of vibriosis in fish. Hemolytic activity has been suggested as a virulence factor by contributing to hemorrhagic septicemia and diarrhea. In order to identify and characterize the hemolysin genes and examine the role of hemolytic activity in virulence, a mini-Tn10Kan mutagenesis clone bank of V. anguillarum was screened. While no hemolysin-negative strains were observed, several mutants with two- to threefold-increased hemolytic activity were found. The region containing the insertion mutation was cloned, sequenced, and found to contain the V. anguillarum hemolysin (vah1) and two other open reading frames, coding for a putative lactonizing lipase (llpA) and a putative phospholipase (plp). The mini-Tn10Kan was inserted into plp. Site-directed mutagenesis of each gene revealed that mutations in vah1 and llpA did not affect hemolytic activity, but insertions into plp caused a two- to threefold increase in hemolysis. Double mutations in plp and either vah1 or llpA resulted in wild-type hemolytic activity. Complementation of plp restored hemolytic activity to wild-type levels. Spectrophotometric determination of hemolysin specific activity revealed that activity on a per cell basis peaked during the first 2 h of growth in LB20. Real-time quantitative reverse transcriptase PCR used to quantitate transcription of the hemolysin genes plp and vah1 in V. anguillarum wild-type strains M93Sm and NB10 revealed that transcription of plp and vah1 peaked at 2 h of growth in LB20. Additionally, expression of vah1 measured in the plp mutant strain, JL01, during the first 2 h of growth was >8 times higher than that in M93Sm. Mutations in plp and llpA did not affect virulence of V. anguillarum. The mutation in vah1 attenuated V. anguillarum virulence in fish. These data show that several genes are responsible for hemolytic activity in V. anguillarum. At least three genes (plp, llpA, and vah1) are responsible for one hemolytic activity. The data also suggest that plp acts as a negative regulator of vah1 and llpA.


2009 ◽  
Vol 192 (3) ◽  
pp. 679-690 ◽  
Author(s):  
Kristylea J. Ojeda ◽  
Jodie M. Box ◽  
K. Dale Noel

ABSTRACT The Rhizobium etli CE3 O antigen is a fixed-length heteropolymer with O methylation being the predominant type of sugar modification. There are two O-methylated residues that occur, on average, once per complete O antigen: a multiply O-methylated terminal fucose and 2-O methylation of a fucose residue within a repeating unit. The amount of the methylated terminal fucose decreases and the amount of 2-O-methylfucose increases when bacteria are grown in the presence of the host plant, Phaseolus vulgaris, or its seed exudates. Insertion mutagenesis was used to identify open reading frames required for the presence of these O-methylated residues. The presence of the methylated terminal fucose required genes wreA, wreB, wreC, wreD, and wreF, whereas 2-O methylation of internal fucoses required the methyltransferase domain of bifunctional gene wreM. Mutants lacking only the methylated terminal fucose, lacking only 2-O methylation, or lacking both the methylated terminal fucose and 2-O methylation exhibited no other lipopolysaccharide structural defects. Thus, neither of these decorations is required for normal O-antigen length, transport, or assembly into the final lipopolysaccharide. This is in contrast to certain enteric bacteria in which the absence of a terminal decoration severely affects O-antigen length and transport. R. etli mutants lacking only the methylated terminal fucose were not altered in symbiosis with host Phaseolus vulgaris, whereas mutants lacking only 2-O-methylfucose exhibited a delay in nodule development during symbiosis. These results support previous conclusions that the methylated terminal fucose is dispensable for symbiosis, whereas 2-O methylation of internal fucoses somehow facilitates early events in symbiosis.


2000 ◽  
Vol 182 (22) ◽  
pp. 6292-6301 ◽  
Author(s):  
Anja Hülsmann ◽  
Rudi Lurz ◽  
Frank Scheffel ◽  
Erwin Schneider

ABSTRACT We have studied the uptake of maltose in the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius, which grows best at 57°C and pH 3.5. Under these conditions, accumulation of [14C]maltose was observed in cells grown with maltose but not in those grown with glucose. At lower temperatures or higher pH values, the transport rates substantially decreased. Uptake of radiolabeled maltose was inhibited by maltotetraose, acarbose, and cyclodextrins but not by lactose, sucrose, or trehalose. The kinetic parameters (Km of 0.91 ± 0.06 μM and V max ranging from 0.6 to 3.7 nmol/min/mg of protein) are consistent with a binding protein-dependent ATP binding cassette (ABC) transporter. A corresponding binding protein (MalE) that interacts with maltose with high affinity (Kd of 1.5 μM) was purified from the culture supernatant of maltose-grown cells. Immunoelectron microscopy revealed distribution of the protein throughout the cell wall. The malE gene was cloned and sequenced. Five additional open reading frames, encoding components of a maltose transport system (MalF and MalG), a putative transcriptional regulator (MalR), a cyclodextrinase (CdaA), and an α-glucosidase (GlcA), were identified downstream of malE. The malE gene lacking the DNA sequence that encodes the signal sequence was expressed in Escherichia coli. The purified wild-type and recombinant proteins bind maltose with high affinity over a wide pH range (2.5 to 7) and up to 80°C. Recombinant MalE cross-reacted with an antiserum raised against the wild-type protein, thereby indicating that the latter is the product of the malE gene. The MalE protein might be well suited as a model to study tolerance of proteins to low pH.


1994 ◽  
Vol 71 (01) ◽  
pp. 134-140 ◽  
Author(s):  
S Ueshima ◽  
P Holvoet ◽  
H R Lijnen ◽  
L Nelles ◽  
V Seghers ◽  
...  

SummaryIn an effort to modify the fibrinolytic and/or pharmacokinetic properties of recombinant low M r single-chain urokinase-type plasminogen activator (rscu-PA-32k), mutants were prepared by site-directed mutagenesis of clusters of charged amino acids with the highest solvent accessibility. The following mutants of rscu-PA-32k were prepared: LUK-2 (Lys 212, Glu 213 and Asp 214 to Ala), LUK-3 (Lys 243 and Asp 244 to Ala), LUK-4 (Arg 262, Lys 264, Glu 265 and Arg 267 to Ala), LUK-5 (Lys 300, Glu 301 and Asp 305 to Ala) and LUK-6 (Arg 400, Lys 404, Glu 405 and Glu 406 to Ala).The rscu-PA 32k moictic3 were expressed in High Five Ttichoplasiani cells, and purified to humugciicily from the conditioned cell culture medium, with recoveries of 0.8 to 3.7 mg/1. The specific fibrinolytic activities (220,000 to 300,000 IU/mg), the rates of plasminogen activation by the single-chain moieties and the rates of conversion In lwo chain moieties by plasmin were comparable for mutant and wild-type rscu PA 32k moieties, with the exception of LUK-5 which was virtually inactive. Equi-effective lysis (50% in 2 h) of 60 pi 125I-fibrin labeled plasma clots submerged in 0.5 ml normal human plasma was obtained with 0.7 to 0.8 μg/ml of wild-type or mutant rscu-PA-3?.k, except with LUK-5 (no significant lysis with 16 pg/ml). Following bolus injection in hamsters, all rscu-PA-32k moieties had a comparably rapid plasma clearance (1.3 to 2.7 ml/min), as a result of a short initial half-life (1.4 to 2.5 min). In hamsters with pulmonary embolism, continuous intravenous infusion over 60 min at a dose of 1 mg/kg, resulted in 53 to 72% clot lysis with the mutants, but only 23% with LUK-5, as compared to 36% for wild-type rscu-PA-32k.These data indicate that clustered charge-to-alanine mutants of rscu-PA-32k, designed to eliminate charged regions with the highest solvent accessibility, do not have significantly improved functional, fibrinolytic or pharmacokinetic properties.


2007 ◽  
Vol 20 (11) ◽  
pp. 1421-1430 ◽  
Author(s):  
Christian Sohlenkamp ◽  
Kanaan A. Galindo-Lagunas ◽  
Ziqiang Guan ◽  
Pablo Vinuesa ◽  
Sally Robinson ◽  
...  

Lysyl-phosphatidylglycerol (LPG) is a well-known membrane lipid in several gram-positive bacteria but is almost unheard of in gram-negative bacteria. In Staphylococcus aureus, the gene product of mprF is responsible for LPG formation. Low pH-inducible genes, termed lpiA, have been identified in the gram-negative α-proteobacteria Rhizobium tropici and Sinorhizobium medicae in screens for acid-sensitive mutants and they encode homologs of MprF. An analysis of the sequenced bacterial genomes reveals that genes coding for homologs of MprF from S. aureus are present in several classes of organisms throughout the bacterial kingdom. In this study, we show that the expression of lpiA from R. tropici in the heterologous hosts Escherichia coli and Sinorhizobium meliloti causes formation of LPG. A wild-type strain of R. tropici forms LPG (about 1% of the total lipids) when the cells are grown in minimal medium at pH 4.5 but not when grown in minimal medium at neutral pH or in complex tryptone yeast (TY) medium at either pH. LPG biosynthesis does not occur when lpiA is deleted and is restored upon complementation of lpiA-deficient mutants with a functional copy of the lpiA gene. When grown in the low-pH medium, lpiA-deficient rhizobial mutants are over four times more susceptible to the cationic peptide polymyxin B than the wild type.


2021 ◽  
Vol 49 (2) ◽  
pp. 030006052098154
Author(s):  
Kan Wu ◽  
Xueqin Chen ◽  
Xufeng Chen ◽  
Shirong Zhang ◽  
Yasi Xu ◽  
...  

Objective Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, has shown potential as a candidate radiosensitizer for many types of cancers. This study aimed to explore the radiosensitization mechanism of SAHA in lung cancer cells. Methods Mutations in p53 were generated by site-directed mutagenesis using polymerase chain reaction. Transfection was performed to generate H1299 cells carrying wild-type or mutant p53. The radiosensitizing enhancement ratio was determined by clonogenic assays. Mitochondrial apoptosis was detected using JC-1 staining and flow cytometry analysis. Results Our results showed that SAHA induced radiosensitization in H1299 cells expressing wild-type p53, p53R175H or p53P223L, but this enhanced clonogenic cell death was not observed in parental H1299 (p53-null) cells or H1299 cells expressing p53 with K120R, A161T and V274R mutations. In SAHA-sensitized cells, mitochondrial apoptosis was induced following exposure to irradiation. Additionally, we observed that a secondary mutation at K120 (K120R) could eliminate p53-mediated radiosensitization and mitochondrial apoptosis. Conclusions The results of this study suggest that wild-type and specific mutant forms of p53 mediate SAHA-induced radiosensitization by regulating mitochondrial apoptosis, and the stabilization of K120 acetylation by SAHA is the molecular basis contributing to radiosensitization in lung cancer cells.


2021 ◽  
pp. 1-8
Author(s):  
Costanza Ferrari Bardile ◽  
Harwin Sidik ◽  
Reynard Quek ◽  
Nur Amirah Binte Mohammad Yusof ◽  
Marta Garcia-Miralles ◽  
...  

Background: The relative contribution of grey matter (GM) and white matter (WM) degeneration to the progressive brain atrophy in Huntington’s disease (HD) has been well studied. The pathology of the spinal cord in HD is comparatively less well documented. Objective: We aim to characterize spinal cord WM abnormalities in a mouse model of HD and evaluate whether selective removal of mutant huntingtin (mHTT) from oligodendroglia rescues these deficits. Methods: Histological assessments were used to determine the area of GM and WM in the spinal cord of 12-month-old BACHD mice, while electron microscopy was used to analyze myelin fibers in the cervical area of the spinal cord. To investigate the impact of inactivation of mHTT in oligodendroglia on these measures, we used the previously described BACHDxNG2Cre mouse line where mHTT is specifically reduced in oligodendrocyte progenitor cells. Results: We show that spinal GM and WM areas are significantly atrophied in HD mice compared to wild-type controls. We further demonstrate that specific reduction of mHTT in oligodendroglial cells rescues the atrophy of spinal cord WM, but not GM, observed in HD mice. Inactivation of mHTT in oligodendroglia had no effect on the density of oligodendroglial cells but enhanced the expression of myelin-related proteins in the spinal cord. Conclusion: Our findings demonstrate that the myelination abnormalities observed in brain WM structures in HD extend to the spinal cord and suggest that specific expression of mHTT in oligodendrocytes contributes to such abnormalities.


1991 ◽  
Vol 277 (3) ◽  
pp. 647-652 ◽  
Author(s):  
F Jacob ◽  
B Joris ◽  
J M Frère

By using site-directed mutagenesis, the active-site serine residue of the Streptomyces albus G beta-lactamase was substituted by alanine and cysteine. Both mutant enzymes were produced in Streptomyces lividans and purified to homogeneity. The cysteine beta-lactamase exhibited a substrate-specificity profile distinct from that of the wild-type enzyme, and its kcat./Km values at pH 7 were never higher than 0.1% of that of the serine enzyme. Unlike the wild-type enzyme, the activity of the mutant increased at acidic pH values. Surprisingly, the alanine mutant exhibited a weak but specific activity for benzylpenicillin and ampicillin. In addition, a very small production of wild-type enzyme, probably due to mistranslation, was detected, but that activity could be selectively eliminated. Both mutant enzymes were nearly as thermostable as the wild-type.


Sign in / Sign up

Export Citation Format

Share Document