scholarly journals Alginate Polymerization and Modification Are Linked in Pseudomonas aeruginosa

mBio ◽  
2015 ◽  
Vol 6 (3) ◽  
Author(s):  
M. Fata Moradali ◽  
Ivan Donati ◽  
Ian M. Sims ◽  
Shirin Ghods ◽  
Bernd H. A. Rehm

ABSTRACTThe molecular mechanisms of alginate polymerization/modification/secretion by a proposed envelope-spanning multiprotein complex are unknown. Here, bacterial two-hybrid assays and pulldown experiments showed that the catalytic subunit Alg8 directly interacts with the proposed copolymerase Alg44 while embedded in the cytoplasmic membrane. Alg44 additionally interacts with the lipoprotein AlgK bridging the periplasmic space. Site-specific mutagenesis of Alg44 showed that protein-protein interactions and stability were independent of conserved amino acid residues R17 and R21, which are involved in c-di-GMP binding, the N-terminal PilZ domain, and the C-terminal 26 amino acids. Site-specific mutagenesis was employed to investigate the c-di-GMP-mediated activation of alginate polymerization by the PilZAlg44domain and Alg8. Activation was found to be different from the proposed activation mechanism for cellulose synthesis. The interactive role of Alg8, Alg44, AlgG (epimerase), and AlgX (acetyltransferase) on alginate polymerization and modification was studied by using site-specific deletion mutants, inactive variants, and overproduction of subunits. The compositions, molecular masses, and material properties of resulting novel alginates were analyzed. The molecular mass was reduced by epimerization, while it was increased by acetylation. Interestingly, when overproduced, Alg44, AlgG, and the nonepimerizing variant AlgG(D324A) increased the degree of acetylation, while epimerization was enhanced by AlgX and its nonacetylating variant AlgX(S269A). Biofilm architecture analysis showed that acetyl groups promoted cell aggregation while nonacetylated polymannuronate alginate promoted stigmergy. Overall, this study sheds new light on the arrangement of the multiprotein complex involved in alginate production. Furthermore, the activation mechanism and the interplay between polymerization and modification of alginate were elucidated.IMPORTANCEThis study provides new insights into the molecular mechanisms of the synthesis of the unique polysaccharide, alginate, which not only is an important virulence factor of the opportunistic human pathogenPseudomonas aeruginosabut also has, due to its material properties, many applications in medicine and industry. Unraveling the assembly and composition of the alginate-synthesizing and envelope-spanning multiprotein complex will be of tremendous significance for the scientific community. We identified a protein-protein interaction network inside the multiprotein complex and studied its relevance with respect to alginate polymerization/modification as well as the c-di-GMP-mediated activation mechanism. A relationship between alginate polymerization and modification was shown. Due to the role of alginate in pathogenesis as well as its unique material properties harnessed in numerous applications, results obtained in this study will aid the design and development of inhibitory drugs as well as the commercial bacterial production of tailor-made alginates.

2020 ◽  
Author(s):  
M Fata Moradali ◽  
I Donati ◽  
Ian Sims ◽  
S Ghods ◽  
BHA Rehm

© 2015 Fata Moradali et al. The molecular mechanisms of alginate polymerization/modification/secretion by a proposed envelope-spanning multiprotein complex are unknown. Here, bacterial two-hybrid assays and pulldown experiments showed that the catalytic subunit Alg8 directly interacts with the proposed copolymerase Alg44 while embedded in the cytoplasmic membrane. Alg44 additionally interacts with the lipoprotein AlgK bridging the periplasmic space. Site-specific mutagenesis of Alg44 showed that protein-protein interactions and stability were independent of conserved amino acid residues R17 and R21, which are involved in c-di-GMP binding, the N-terminal PilZ domain, and the C-terminal 26 amino acids. Site-specific mutagenesis was employed to investigate the c-di-GMP-mediated activation of alginate polymerization by the PilZAlg44 domain and Alg8. Activation was found to be different from the proposed activation mechanism for cellulose synthesis. The interactive role of Alg8, Alg44, AlgG (epimerase), and AlgX (acetyltransferase) on alginate polymerization and modification was studied by using site-specific deletion mutants, inactive variants, and overproduction of subunits. The compositions, molecular masses, and material properties of resulting novel alginates were analyzed. The molecular mass was reduced by epimerization, while it was increased by acetylation. Interestingly, when overproduced, Alg44, AlgG, and the nonepimerizing variant AlgG(D324A) increased the degree of acetylation, while epimerization was enhanced by AlgX and its nonacetylating variant AlgX(S269A). Biofilm architecture analysis showed that acetyl groups promoted cell aggregation while nonacetylated polymannuronate alginate promoted stigmergy. Overall, this study sheds new light on the arrangement of the multiprotein complex involved in alginate production. Furthermore, the activation mechanism and the interplay between polymerization and modification of alginate were elucidated.


2020 ◽  
Author(s):  
M Fata Moradali ◽  
I Donati ◽  
Ian Sims ◽  
S Ghods ◽  
BHA Rehm

© 2015 Fata Moradali et al. The molecular mechanisms of alginate polymerization/modification/secretion by a proposed envelope-spanning multiprotein complex are unknown. Here, bacterial two-hybrid assays and pulldown experiments showed that the catalytic subunit Alg8 directly interacts with the proposed copolymerase Alg44 while embedded in the cytoplasmic membrane. Alg44 additionally interacts with the lipoprotein AlgK bridging the periplasmic space. Site-specific mutagenesis of Alg44 showed that protein-protein interactions and stability were independent of conserved amino acid residues R17 and R21, which are involved in c-di-GMP binding, the N-terminal PilZ domain, and the C-terminal 26 amino acids. Site-specific mutagenesis was employed to investigate the c-di-GMP-mediated activation of alginate polymerization by the PilZAlg44 domain and Alg8. Activation was found to be different from the proposed activation mechanism for cellulose synthesis. The interactive role of Alg8, Alg44, AlgG (epimerase), and AlgX (acetyltransferase) on alginate polymerization and modification was studied by using site-specific deletion mutants, inactive variants, and overproduction of subunits. The compositions, molecular masses, and material properties of resulting novel alginates were analyzed. The molecular mass was reduced by epimerization, while it was increased by acetylation. Interestingly, when overproduced, Alg44, AlgG, and the nonepimerizing variant AlgG(D324A) increased the degree of acetylation, while epimerization was enhanced by AlgX and its nonacetylating variant AlgX(S269A). Biofilm architecture analysis showed that acetyl groups promoted cell aggregation while nonacetylated polymannuronate alginate promoted stigmergy. Overall, this study sheds new light on the arrangement of the multiprotein complex involved in alginate production. Furthermore, the activation mechanism and the interplay between polymerization and modification of alginate were elucidated.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Adrien Boes ◽  
Samir Olatunji ◽  
Eefjan Breukink ◽  
Mohammed Terrak

ABSTRACTPeptidoglycan (PG) is an essential constituent of the bacterial cell wall. During cell division, PG synthesis localizes at midcell under the control of a multiprotein complex, the divisome, allowing the safe formation of two new cell poles and separation of daughter cells. Genetic studies inEscherichia colipointed out that FtsBLQ and FtsN participate in the regulation of septal PG (sPG) synthesis; however, the underlying molecular mechanisms remained largely unknown. Here we show that FtsBLQ subcomplex directly interacts with the PG synthase PBP1b and with the subcomplex FtsW-PBP3, mainly via FtsW. Strikingly, we discovered that FtsBLQ inhibits the glycosyltransferase activity of PBP1b and that this inhibition was antagonized by the PBP1b activators FtsN and LpoB. The same results were obtained in the presence of FtsW-PBP3. Moreover, using a simple thioester substrate (S2d), we showed that FtsBLQ also inhibits the transpeptidase domain of PBP3 but not of PBP1b. As the glycosyltransferase and transpeptidase activities of PBP1b are coupled and PBP3 activity requires nascent PG substrate, the results suggest that PBP1b inhibition by FtsBLQ will block sPG synthesis by these enzymes, thus maintaining cell division as repressed until the maturation of the divisome is signaled by the accumulation of FtsN, which triggers sPG synthesis and the initiation of cell constriction. These results confirm that PBP1b plays an important role inE. colicell division and shed light on the specific role of FtsN, which seems to counterbalance the inhibitory effect of FtsBLQ to restore PBP1b activity.IMPORTANCEBacterial cell division is governed by a multiprotein complex called divisome, which facilitates a precise cell wall synthesis at midcell and daughter cell separation. Protein-protein interactions and activity studies using different combinations of the septum synthesis core of the divisome revealed that the glycosyltransferase activity of PBP1b is repressed by FtsBLQ and that the presence of FtsN or LpoB suppresses this inhibition. Moreover, FtsBLQ also inhibits the PBP3 activity on a thioester substrate. These results provide enzymatic evidence of the regulation of the peptidoglycan synthase PBP1b and PBP3 within the divisome. The results confirm that PBP1b plays an important role inE. colicell division and shed light on the specific role of FtsN, which functions to relieve the repression on PBP1b by FtsBLQ and to initiate septal peptidoglycan synthesis.


2017 ◽  
Vol 199 (13) ◽  
Author(s):  
Jessica M. Gullett ◽  
Amber Bible ◽  
Gladys Alexandre

ABSTRACT Chemotaxis is the movement of cells in response to gradients of diverse chemical cues. Motile bacteria utilize a conserved chemotaxis signal transduction system to bias their motility and navigate through a gradient. A central regulator of chemotaxis is the histidine kinase CheA. This cytoplasmic protein interacts with membrane-bound receptors, which assemble into large polar arrays, to propagate the signal. In the alphaproteobacterium Azospirillum brasilense, Che1 controls transient increases in swimming speed during chemotaxis, but it also biases the cell length at division. However, the exact underlying molecular mechanisms for Che1-dependent control of multiple cellular behaviors are not known. Here, we identify specific domains of the CheA1 histidine kinase implicated in modulating each of these functions. We show that CheA1 is produced in two isoforms: a membrane-anchored isoform produced as a fusion with a conserved seven-transmembrane domain of unknown function (TMX) at the N terminus and a soluble isoform similar to prototypical CheA. Site-directed and deletion mutagenesis combined with behavioral assays confirm the role of CheA1 in chemotaxis and implicate the TMX domain in mediating changes in cell length. Fluorescence microscopy further reveals that the membrane-anchored isoform is distributed around the cell surface while the soluble isoform localizes at the cell poles. Together, the data provide a mechanism for the role of Che1 in controlling multiple unrelated cellular behaviors via acquisition of a new domain in CheA1 and production of distinct functional isoforms. IMPORTANCE Chemotaxis provides a significant competitive advantage to bacteria in the environment, and this function has been transferred laterally multiple times, with evidence of functional divergence in different genomic contexts. The molecular principles that underlie functional diversification of chemotaxis in various genomic contexts are unknown. Here, we provide a molecular mechanism by which a single CheA protein controls two unrelated functions: chemotaxis and cell length. Acquisition of this multifunctionality is seemingly a recent evolutionary event. The findings illustrate a mechanism by which chemotaxis function may be co-opted to regulate additional cellular functions.


2014 ◽  
Vol 80 (21) ◽  
pp. 6843-6852 ◽  
Author(s):  
Victoria G. Pederick ◽  
Bart A. Eijkelkamp ◽  
Miranda P. Ween ◽  
Stephanie L. Begg ◽  
James C. Paton ◽  
...  

ABSTRACTIn microaerophilic or anaerobic environments,Pseudomonas aeruginosautilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO42−). Here, we show that molybdate acquisition inP. aeruginosaoccurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of themodAgene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition ofP. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth ofP. aeruginosaand reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition.


2012 ◽  
Vol 80 (5) ◽  
pp. 1681-1689 ◽  
Author(s):  
Ane Mohn Bjelland ◽  
Henning Sørum ◽  
Daget Ayana Tegegne ◽  
Hanne C. Winther-Larsen ◽  
Nils Peder Willassen ◽  
...  

ABSTRACTVibrio(Aliivibrio)salmonicidais the causal agent of cold-water vibriosis, a fatal bacterial septicemia primarily of farmed salmonid fish. The molecular mechanisms of invasion, colonization, and growth ofV. salmonicidain the host are still largely unknown, and few virulence factors have been identified. Quorum sensing (QS) is a cell-to-cell communication system known to regulate virulence and other activities in several bacterial species. The genome ofV. salmonicidaLFI1238 encodes products presumably involved in several QS systems. In this study, the gene encoding LitR, a homolog of the master regulator of QS inV. fischeri, was deleted. Compared to the parental strain, thelitRmutant showed increased motility, adhesion, cell-to-cell aggregation, and biofilm formation. Furthermore, thelitRmutant produced less cryptic bioluminescence, whereas production of acylhomoserine lactones was unaffected. Our results also indicate a salinity-sensitive regulation of LitR. Finally, reduced mortality was observed in Atlantic salmon infected with thelitRmutant, implying that the fish were more susceptible to infection with the wild type than with the mutant strain. We hypothesize that LitR inhibits biofilm formation and favors planktonic growth, with the latter being more adapted for pathogenesis in the fish host.


2017 ◽  
Vol 83 (9) ◽  
Author(s):  
M. Fata Moradali ◽  
Shirin Ghods ◽  
Bernd H. A. Rehm

ABSTRACT The exopolysaccharide alginate, produced by the opportunistic human pathogen Pseudomonas aeruginosa, confers a survival advantage to the bacterium by contributing to the formation of characteristic biofilms during infection. Membrane-anchored proteins Alg8 (catalytic subunit) and Alg44 (copolymerase) constitute the alginate polymerase that is being activated by the second messenger molecule bis-(3′, 5′)-cyclic dimeric GMP (c-di-GMP), but the mechanism of activation remains elusive. To shed light on the c-di-GMP-mediated activation of alginate polymerization in vivo, an in silico structural model of Alg8 fused to the c-di-GMP binding PilZ domain informed by the structure of cellulose synthase, BcsA, was developed. This structural model was probed by site-specific mutagenesis and different cellular levels of c-di-GMP. Results suggested that c-di-GMP-mediated activation of alginate polymerization involves amino acids residing at two loops, including H323 (loop A) and T457 and E460 (loop B), surrounding the catalytic site in the predicted model. The activities of the respective Alg8 variants suggested that c-di-GMP-mediated control of substrate access to the catalytic site of Alg8 is dissimilar to the known activation mechanism of BcsA. Alg8 variants responded differently to various c-di-GMP levels, while MucR imparted c-di-GMP for activation of alginate polymerase. Furthermore, we showed that Alg44 copolymerase constituted a stable dimer, with its periplasmic domains required for protein localization and alginate polymerization and modification. Superfolder green fluorescent protein (GFP) fusions of Alg8 and Alg44 showed a nonuniform, punctate, and patchy arrangement of both proteins surrounding the cell. Overall, this study provides insights into the c-di-GMP-mediated activation of alginate polymerization while assigning functional roles to Alg8 and Alg44, including their subcellular localization and distribution. IMPORTANCE The exopolysaccharide alginate is an important biofilm component of the opportunistic human pathogen P. aeruginosa and the principal cause of the mucoid phenotype that is the hallmark of chronic infections of cystic fibrosis patients. The production of alginate is mediated by interacting membrane proteins Alg8 and Alg44, while their activity is posttranslationally regulated by the second messenger c-di-GMP, a well-known regulator of the synthesis of a range of other exopolysaccharides in bacteria. This study provides new insights into the unknown activation mechanism of alginate polymerization by c-di-GMP. Experimental evidence that the activation of alginate polymerization requires the engagement of specific amino acid residues residing at the catalytic domain of Alg8 glycosyltransferase was obtained, and these residues are proposed to exert an allosteric effect on the PilZAlg44 domain upon c-di-GMP binding. This mechanism is dissimilar to the proposed mechanism of the autoinhibition of cellulose polymerization imposed by salt bridge formation between amino acid residues and released upon c-di-GMP binding, leading to activation of polymerization. On the other hand, conserved amino acid residues in the periplasmic domain of Alg44 were found to be involved in alginate polymerization as well as modification events, i.e., acetylation and epimerization. Due to the critical role of c-di-GMP in the regulation of many biological processes, particularly the motility-sessility switch and also the emergence of persisting mucoid phenotypes, these results aid to reach a better understanding of biofilm-associated regulatory networks and c-di-GMP signaling and might assist the development of inhibitory drugs.


2012 ◽  
Vol 56 (9) ◽  
pp. 4771-4778 ◽  
Author(s):  
Bartolomé Moyá ◽  
Alejandro Beceiro ◽  
Gabriel Cabot ◽  
Carlos Juan ◽  
Laura Zamorano ◽  
...  

ABSTRACTWe investigated the mechanisms leading toPseudomonas aeruginosapan-β-lactam resistance (PBLR) development during the treatment of nosocomial infections, with a particular focus on the modification of penicillin-binding protein (PBP) profiles and imipenem, ceftazidime, and ceftolozane (former CXA-101) PBP binding affinities. For this purpose, six clonally related pairs of sequential susceptible-PBLR isolates were studied. The presence ofoprD,ampD, anddacBmutations was explored by PCR followed by sequencing and the expression ofampCand efflux pump genes by real-time reverse transcription-PCR. The fluorescent penicillin Bocillin FL was used to determine PBP profiles in membrane preparations from all pairs, and 50% inhibitory concentrations (IC50s) of ceftolozane, ceftazidime, and imipenem were analyzed in 3 of them. Although a certain increase was noted (0 to 5 2-fold dilutions), the MICs of ceftolozane were ≤4 μg/ml in all PBLR isolates. All 6 PBLR isolates lacked OprD and overexpressedampCand one or several efflux pumps, particularlymexBand/ormexY. Additionally, 5 of them showed modified PBP profiles, including a modified pattern (n= 1) or diminished expression (n= 1) of PBP1a and a lack of PBP4 expression (n= 4), which correlated with AmpC overexpression driven bydacBmutation. Analysis of the essential PBP IC50s revealed significant variation of PBP1a/b binding affinities, both within each susceptible-PBLR pair and across the different pairs. Moreover, despite the absence of significant differences in gene expression or sequence, a clear tendency toward increased PBP2 (imipenem) and PBP3 (ceftazidime, ceftolozane, imipenem) IC50s was noted in PBLR isolates. Thus, our results suggest that in addition to AmpC, efflux pumps, and OprD, the modification of PBP patterns appears to play a role in thein vivoemergence of PBLR strains, which still conserve certain susceptibility to the new antipseudomonal cephalosporin ceftolozane.


2011 ◽  
Vol 56 (2) ◽  
pp. 1019-1030 ◽  
Author(s):  
Samuel M. Moskowitz ◽  
Mark K. Brannon ◽  
Nandini Dasgupta ◽  
Miyuki Pier ◽  
Nicole Sgambati ◽  
...  

ABSTRACTPseudomonas aeruginosacan develop resistance to polymyxin and other cationic antimicrobial peptides. Previous work has shown that mutations in the PmrAB and PhoPQ regulatory systems can confer low to moderate levels of colistin (polymyxin E) resistance in laboratory strains and clinical isolates of this organism (MICs of 8 to 64 mg/liter). To explore the role of PmrAB in high-level clinical polymyxin resistance,P. aeruginosaisolates from chronically colistin-treated cystic fibrosis patients, most with colistin MICs of >512 mg/liter, were analyzed. These cystic fibrosis isolates contained probable gain-of-functionpmrBalleles that conferred polymyxin resistance to strains with a wild-type orpmrABdeletion background. Double mutantpmrBalleles that contained mutations in both the periplasmic and dimerization-phosphotransferase domains markedly augmented polymyxin resistance. Expression of mutantpmrBalleles induced transcription from the promoter of thearnBoperon and stimulated addition of 4-amino-l-arabinose to lipid A, consistent with the known role of this lipid A modification in polymyxin resistance. For some highly polymyxin-resistant clinical isolates, repeated passage without antibiotic selection pressure resulted in loss of resistance, suggesting that secondary suppressors occur at a relatively high frequency and account for the instability of this phenotype. These results indicate thatpmrBgain-of-function mutations can contribute to high-level polymyxin resistance in clinical strains ofP. aeruginosa.


2011 ◽  
Vol 80 (1) ◽  
pp. 100-109 ◽  
Author(s):  
Tania Véliz Rodriguez ◽  
Federica Moalli ◽  
Nadia Polentarutti ◽  
Moira Paroni ◽  
Eduardo Bonavita ◽  
...  

ABSTRACTToll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulatorin vivounder different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused byPseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acuteP. aeruginosainfection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense againstP. aeruginosaacute lung infection can be improved by blocking IL-1 since exaggerated IL-1β production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8−/−IL-1RI−/−double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused byP. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease.


Sign in / Sign up

Export Citation Format

Share Document