scholarly journals Clinically Relevant Plasmid-Host Interactions Indicate that Transcriptional and Not Genomic Modifications Ameliorate Fitness Costs of Klebsiella pneumoniae Carbapenemase-Carrying Plasmids

mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Michelle M. C. Buckner ◽  
Howard T. H. Saw ◽  
Rachael N. Osagie ◽  
Alan McNally ◽  
Vito Ricci ◽  
...  

ABSTRACT The rapid dissemination of antimicrobial resistance (AMR) around the globe is largely due to mobile genetic elements, such as plasmids. They confer resistance to critically important drugs, including extended-spectrum beta-lactams, carbapenems, and colistin. Large, complex resistance plasmids have evolved alongside their host bacteria. However, much of the research on plasmid-host evolution has focused on small, simple laboratory plasmids in laboratory-adapted bacterial hosts. These and other studies have documented mutations in both host and plasmid genes which occur after plasmid introduction to ameliorate fitness costs of plasmid carriage. We describe here the impact of two naturally occurring variants of a large AMR plasmid (pKpQIL) on a globally successful pathogen. In our study, after pKpQIL plasmid introduction, no changes in coding domain sequences were observed in their natural host, Klebsiella pneumoniae . However, significant changes in chromosomal and plasmid gene expression may have allowed the bacterium to adapt to the acquisition of the AMR plasmid. We hypothesize that this was sufficient to ameliorate the associated fitness costs of plasmid carriage, as pKpQIL plasmids were maintained without selection pressure. The dogma that removal of selection pressure (e.g., antimicrobial exposure) results in plasmid loss due to bacterial fitness costs is not true for all plasmid/host combinations. We also show that pKpQIL impacted the ability of K. pneumoniae to form a biofilm, an important aspect of virulence. This study used highly relevant models to study the interaction between AMR plasmids and pathogens and revealed striking differences from results of studies done on laboratory-adapted plasmids and strains. IMPORTANCE Antimicrobial resistance is a serious problem facing society. Many of the genes that confer resistance can be shared between bacteria through mobile genetic elements, such as plasmids. Our work shows that when two clinically relevant AMR plasmids enter their natural host bacteria, there are changes in gene expression, rather than changes to gene coding sequences. These changes in gene expression ameliorate the potential fitness costs of carriage of these AMR plasmids. In line with this, the plasmids were stable within their natural host and were not lost in the absence of selective pressure. We also show that better understanding of the impact of resistance plasmids on fundamental pathogen biology, including biofilm formation, is crucial for fighting drug-resistant infections.

2013 ◽  
Vol 7 (12) ◽  
pp. 922-928 ◽  
Author(s):  
Nguyen Hoang Thu Trang ◽  
Tran Vu Thieu Nga ◽  
James I Campbell ◽  
Nguyen Trong Hiep ◽  
Jeremy Farrar ◽  
...  

Background: Extended-spectrum β-lactamases (ESBLs) are enzymes capable of hydrolyzing oxyimino-β-lactams and inducing resistance to third generation cephalosporins. The genes encoding ESBLs are widespread and generally located on highly transmissible resistance plasmids. We aimed to investigate the complement of ESBL genes in E. coli and Klebsiella pneumoniae causing nosocomial infections in hospitals in Ho Chi Minh City, Vietnam. Methodology: Thirty-two non-duplicate isolates of E. coli and Klebsiella pneumoniae causing nosocomial infections, isolated between March and June 2010, were subjected to antimicrobial susceptibility testing. All isolates were PCR-amplified to detect the blaSHV, blaTEM and blaCTX-M ESBL genes and subjected to plasmid analysis. Results: We found that co-resistance to multiple antimicrobials was highly prevalent, and we report the predominance of the blaCTX-M-15 and blaCTX-M-27 genes, located on highly transmissible plasmids ranging from 50 to 170 kb in size. Conclusions: Our study represents a snap shot of ESBL-producing enteric bacteria causing nosocomial infections in this setting. We suggest that antimicrobial resistance in nosocomial E. coli and Klebsiella pneumoniae is rampant in Vietnam and ESBL organisms are widespread. In view of these data and the dramatic levels of antimicrobial resistance reported in Vietnam we advocate an urgent review of antimicrobial use in the Vietnamese healthcare system.


2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


Author(s):  
Luís Guilherme de Araújo Longo ◽  
Herrison Fontana ◽  
Viviane Santos de Sousa ◽  
Natalia Chilinque Zambão da Silva ◽  
Ianick Souto Martins ◽  
...  

Klebsiella pneumoniae causes a diversity of infections in both healthcare and community settings. This pathogen is showing an increased ability to accumulate antimicrobial resistance and virulence genes, making it a public health concern. Here we describe the whole-genome sequence characteristics of an ST15 colistin-resistant K. pneumoniae isolate obtained from a blood culture of a 79-year-old female patient admitted to a university hospital in Brazil. Kp14U04 was resistant to most clinically useful antimicrobial agents, remaining susceptible only to aminoglycosides and fosfomycin. The colistin resistance in this isolate was due to a ~1.3 kb deletion containing four genes, namely mgrB, yebO, yobH and the transcriptional regulator kdgR. The study isolate presented a variety of antimicrobial resistance genes, including the carbapenemase-encoding gene bla KPC-2, the extended-spectrum beta-lactamase (ESBL)-encoding gene bla SHV-28 and the beta-lactamase-encoding gene bla OXA-1. Additionally, Kp14U04 harboured a multiple stress resistance protein, efflux systems and regulators, heavy metal resistance and virulence genes, plasmids, prophage-related sequences and genomic islands. These features revealed the high potential of this isolate to resist antimicrobial therapy, survive in adverse environments, cause infections and overcome host defence mechanisms.


mSphere ◽  
2018 ◽  
Vol 3 (5) ◽  
Author(s):  
Debra Rossouw ◽  
Skye P. Meiring ◽  
Florian F. Bauer

ABSTRACTPhysical contact between yeast species, in addition to better-understood and reported metabolic interactions, has recently been proposed to significantly impact the relative fitness of these species in cocultures. Such data have been generated by using membrane bioreactors, which physically separate two yeast species. However, doubts persist about the degree that the various membrane systems allow for continuous and complete metabolic contact, including the exchange of proteins. Here, we provide independent evidence for the importance of physical contact by using a genetic system to modify the degree of physical contact and, therefore, the degree of asexual intraspecies and interspecies adhesion in yeast. Such adhesion is controlled by a family of structurally related cell wall proteins encoded by theFLOgene family. As previously shown, the expression of specific members of theFLOgene family inSaccharomyces cerevisiaedramatically changes the coadhesion patterns between this yeast and other yeast species. Here, we use this differential aggregation mediated byFLOgenes as a model to assess the impact of physical contact between different yeast species on the relative fitness of these species in simplified ecosystems. The identity of theFLOgene has a marked effect on the persistence of specific non-Saccharomycesyeasts over the course of extended growth periods in batch cultures. Remarkably,FLO1andFLO5expression often result in opposite outcomes. The data provide clear evidence for the role of physical contact in multispecies yeast ecosystems and suggest thatFLOgene expression may be a major factor in such interactions.IMPORTANCEThe impact of direct (physical) versus indirect (metabolic) interactions between different yeast species has attracted significant research interest in recent years. This is due to the growing interest in the use of multispecies consortia in bioprocesses of industrial relevance and the relevance of interspecies interactions in establishing stable synthetic ecosystems. Compartment bioreactors have traditionally been used in this regard but suffer from numerous limitations. Here, we provide independent evidence for the importance of physical contact by using a genetic system, based on theFLOgene family, to modify the degree of physical contact and, therefore, the degree of asexual intraspecies and interspecies adhesion in yeast. Our results show that interspecies contact significantly impacts population dynamics and the survival of individual species. Remarkably, different members of theFLOgene family often lead to very different population outcomes, further suggesting thatFLOgene expression may be a major factor in such interactions.


2020 ◽  
Vol 87 (1) ◽  
Author(s):  
Lulu Chen ◽  
Alejandro R. Walker ◽  
Robert A. Burne ◽  
Lin Zeng

ABSTRACT Amino sugars, particularly glucosamine (GlcN) and N-acetylglucosamine (GlcNAc), are abundant carbon and nitrogen sources supplied in host secretions and in the diet to the biofilms colonizing the human oral cavity. Evidence is emerging that these amino sugars provide ecological advantages to beneficial commensals over oral pathogens and pathobionts. Here, we performed transcriptome analysis on Streptococcus mutans and Streptococcus gordonii growing in single-species or dual-species cultures with glucose, GlcN, or GlcNAc as the primary carbohydrate source. Compared to glucose, GlcN caused drastic transcriptomic shifts in each species of bacteria when it was cultured alone. Likewise, cocultivation in the presence of GlcN yielded transcriptomic profiles that were dramatically different from the single-species results from GlcN-grown cells. In contrast, GlcNAc elicited only minor changes in the transcriptome of either organism in single- and dual-species cultures. Interestingly, genes involved in pyruvate metabolism were among the most significantly affected by GlcN in both species, and these changes were consistent with measurements of pyruvate in culture supernatants. Differing from what was found in a previous report, growth of S. mutans alone with GlcN inhibited the expression of multiple operons required for mutacin production. Cocultivation with S. gordonii consistently increased the expression of two manganese transporter operons (slo and mntH) and decreased expression of mutacin genes in S. mutans. Conversely, S. gordonii appeared to be less affected by the presence of S. mutans but did show increases in genes for biosynthetic processes in the cocultures. In conclusion, amino sugars profoundly alter the interactions between pathogenic and commensal streptococci by reprogramming central metabolism. IMPORTANCE Carbohydrate metabolism is central to the development of dental caries. A variety of sugars available to dental microorganisms influence the development of caries by affecting the physiology, ecology, and pathogenic potential of tooth biofilms. Using two well-characterized oral bacteria, one pathogen (Streptococcus mutans) and one commensal (Streptococcus gordonii), in an RNA deep-sequencing analysis, we studied the impact of two abundant amino sugars on bacterial gene expression and interspecies interactions. The results indicated large-scale remodeling of gene expression induced by GlcN in particular, affecting bacterial energy generation, acid production, protein synthesis, and release of antimicrobial molecules. Our study provides novel insights into how amino sugars modify bacterial behavior, information that will be valuable in the design of new technologies to detect and prevent oral infectious diseases.


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Raúl Recio ◽  
Mikel Mancheño ◽  
Esther Viedma ◽  
Jennifer Villa ◽  
María Ángeles Orellana ◽  
...  

ABSTRACT Whether multidrug resistance (MDR) is associated with mortality in patients with Pseudomonas aeruginosa bloodstream infections (BSI) remains controversial. Here, we explored the prognostic factors of P. aeruginosa BSI with emphasis on antimicrobial resistance and virulence. All P. aeruginosa BSI episodes in a 5-year period were retrospectively analyzed. The impact in early (5-day) and late (30-day) crude mortality of host, antibiotic treatment, and pathogen factors was assessed by multivariate logistic regression analysis. Of 243 episodes, 93 (38.3%) were caused by MDR-PA. Crude 5-day (20%) and 30-day (33%) mortality was more frequent in patients with MDR-PA (34.4% versus 11.3%, P < 0.001 and 52.7% versus 21.3%, P < 0.001, respectively). Early mortality was associated with neutropenia (adjusted odds ratio [aOR], 9.21; 95% confidence interval [CI], 3.40 to 24.9; P < 0.001), increased Pitt score (aOR, 2.42; 95% CI, 1.34 to 4.36; P = 0.003), respiratory source (aOR, 3.23; 95% CI,2.01 to 5.16; P < 0.001), inadequate empirical therapy (aOR, 4.57; 95% CI, 1.59 to 13.1; P = 0.005), shorter time to positivity of blood culture (aOR, 0.88; 95% CI, 0.80 to 0.97; P = 0.010), an exoU-positive genotype (aOR, 3.58; 95% CI, 1.31 to 9.79; P = 0.013), and the O11 serotype (aOR, 3.64; 95% CI, 1.20 to 11.1; P = 0.022). These risk factors were similarly identified for late mortality, along with an MDR phenotype (aOR, 2.18; 95% CI, 1.04 to 4.58; P = 0.040). Moreover, the O11 serotype (15.2%, 37/243) was common among MDR (78.4%, 29/37) and exoU-positive (89.2%, 33/37) strains. Besides relevant clinical variables and inadequate empirical therapy, pathogen-related factors such as an MDR phenotype, an exoU-positive genotype, and the O11 serotype adversely affect the outcome of P. aeruginosa BSI.


2012 ◽  
Vol 78 (22) ◽  
pp. 8062-8066 ◽  
Author(s):  
Russell D. Hamilton ◽  
Holly J. Hulsebus ◽  
Samina Akbar ◽  
Jeffrey T. Gray

ABSTRACTSalmonellosis is one of the most common causes of food-borne disease in the United States. Increasing antimicrobial resistance and corresponding increases in virulence present serious challenges. Currently, empirical therapy for invasiveSalmonella entericainfection includes either ceftriaxone or ciprofloxacin (E. L. Hohmann, Clin. Infect. Dis. 32:263–269, 2001). TheblaCMY-2gene confers resistance to ceftriaxone, the antimicrobial of choice for pediatric patients with invasiveSalmonella entericainfections, making these infections especially dangerous (J. M. Whichard et al., Emerg. Infect. Dis. 11:1464–1466, 2005). We hypothesized thatblaCMY-2-positiveSalmonella entericawould exhibit increased MICs to multiple antimicrobial agents and increased resistance gene expression following exposure to ceftriaxone using a protocol that simulated a patient treatmentin vitro. SevenSalmonella entericastrains survived a simulated patient treatmentin vitroand, following treatment, exhibited a significantly increased ceftriaxone MIC. Not only would these isolates be less responsive to further ceftriaxone treatment, but because theblaCMY-2genes are commonly located on large, multidrug-resistant plasmids, increased expression of theblaCMY-2gene may be associated with increased expression of other drug resistance genes located on the plasmid (N. D. Hanson and C. C. Sanders, Curr. Pharm. Des. 5:881–894, 1999). The results of this study demonstrate that a simulated patient treatment with ceftriaxone can alter the expression of antimicrobial resistance genes, includingblaCMY-2andfloRinS. entericaserovar Typhimurium andS. entericaserovar Newport. Additionally, we have shown increased MICs following a simulated patient treatment with ceftriaxone for tetracycline, amikacin, ceftriaxone, and cefepime, all of which have resistance genes commonly located on CMY-2 plasmids. The increases in resistance observed are significant and may have a negative impact on both public health and antimicrobial resistance ofSalmonella enterica.


2017 ◽  
Vol 199 (18) ◽  
Author(s):  
Nicola Horstmann ◽  
Pranoti Sahasrabhojane ◽  
Hui Yao ◽  
Xiaoping Su ◽  
Samuel A. Shelburne

ABSTRACT Control of the virulence regulator/sensor kinase (CovRS) two-component system (TCS) serves as a model for investigating the impact of signaling pathways on the pathogenesis of Gram-positive bacteria. However, the molecular mechanisms by which CovR, an OmpR/PhoB family response regulator, controls virulence gene expression are poorly defined, partly due to the labile nature of its aspartate phosphorylation site. To better understand the regulatory effect of phosphorylated CovR, we generated the phosphorylation site mutant strain 10870-CovR-D53E, which we predicted to have a constitutive CovR phosphorylation phenotype. Interestingly, this strain showed CovR activity only for a subset of the CovR regulon, which allowed for classification of CovR-influenced genes into D53E-regulated and D53E-nonregulated groups. Inspection of the promoter sequences of genes belonging to each group revealed distinct promoter architectures with respect to the location and number of putative CovR-binding sites. Electrophoretic mobility shift analysis demonstrated that recombinant CovR-D53E protein retains its ability to bind promoter DNA from both CovR-D53E-regulated and -nonregulated groups, implying that factors other than mere DNA binding are crucial for gene regulation. In fact, we found that CovR-D53E is incapable of dimerization, a process thought to be critical to OmpR/PhoB family regulator function. Thus, our global analysis of CovR-D53E indicates dimerization-dependent and dimerization-independent modes of CovR-mediated repression, thereby establishing distinct mechanisms by which this critical regulator coordinates virulence gene expression. IMPORTANCE Streptococcus pyogenes causes a wide variety of diseases, ranging from superficial skin and throat infections to life-threatening invasive infections. To establish these various disease manifestations, Streptococcus pyogenes requires tightly coordinated production of its virulence factor repertoire. Here, the response regulator CovR plays a crucial role. As an OmpR/PhoB family member, CovR is activated by phosphorylation on a conserved aspartate residue, leading to protein dimerization and subsequent binding to operator sites. Our transcriptome analysis using the monomeric phosphorylation mimic mutant CovR-D53E broadens this general notion by revealing dimerization-independent repression of a subset of CovR-regulated genes. Combined with promoter analyses, these data suggest distinct mechanisms of CovR transcriptional control, which allow for differential expression of virulence genes in response to environmental cues.


2020 ◽  
Vol 64 (10) ◽  
Author(s):  
Po-Yu Liu ◽  
Yu-Lin Lee ◽  
Min-Chi Lu ◽  
Pei-Lan Shao ◽  
Po-Liang Lu ◽  
...  

ABSTRACT A multicenter collection of bacteremic isolates of Escherichia coli (n = 423), Klebsiella pneumoniae (n = 372), Pseudomonas aeruginosa (n = 300), and Acinetobacter baumannii complex (n = 199) was analyzed for susceptibility. Xpert Carba-R assay and sequencing for mcr genes were performed for carbapenem- or colistin-resistant isolates. Nineteen (67.8%) carbapenem-resistant K. pneumoniae (n = 28) and one (20%) carbapenem-resistant E. coli (n = 5) isolate harbored blaKPC (n = 17), blaOXA-48 (n = 2), and blaVIM (n = 1) genes.


2020 ◽  
Vol 202 (9) ◽  
Author(s):  
Tien G. Nguyen ◽  
Diego A. Vargas-Blanco ◽  
Louis A. Roberts ◽  
Scarlet S. Shell

ABSTRACT Regulation of gene expression is critical for Mycobacterium tuberculosis to tolerate stressors encountered during infection and for nonpathogenic mycobacteria such as Mycobacterium smegmatis to survive environmental stressors. Unlike better-studied models, mycobacteria express ∼14% of their genes as leaderless transcripts. However, the impacts of leaderless transcript structures on mRNA half-life and translation efficiency in mycobacteria have not been directly tested. For leadered transcripts, the contributions of 5′ untranslated regions (UTRs) to mRNA half-life and translation efficiency are similarly unknown. In M. tuberculosis and M. smegmatis, the essential sigma factor, SigA, is encoded by a transcript with a relatively short half-life. We hypothesized that the long 5′ UTR of sigA causes this instability. To test this, we constructed fluorescence reporters and measured protein abundance, mRNA abundance, and mRNA half-life and calculated relative transcript production rates. The sigA 5′ UTR conferred an increased transcript production rate, shorter mRNA half-life, and decreased apparent translation rate compared to a synthetic 5′ UTR commonly used in mycobacterial expression plasmids. Leaderless transcripts appeared to be translated with similar efficiency as those with the sigA 5′ UTR but had lower predicted transcript production rates. A global comparison of M. tuberculosis mRNA and protein abundances failed to reveal systematic differences in protein/mRNA ratios for leadered and leaderless transcripts, suggesting that variability in translation efficiency is largely driven by factors other than leader status. Our data are also discussed in light of an alternative model that leads to different conclusions and suggests leaderless transcripts may indeed be translated less efficiently. IMPORTANCE Tuberculosis, caused by Mycobacterium tuberculosis, is a major public health problem killing 1.5 million people globally each year. During infection, M. tuberculosis must alter its gene expression patterns to adapt to the stress conditions it encounters. Understanding how M. tuberculosis regulates gene expression may provide clues for ways to interfere with the bacterium’s survival. Gene expression encompasses transcription, mRNA degradation, and translation. Here, we used Mycobacterium smegmatis as a model organism to study how 5′ untranslated regions affect these three facets of gene expression in multiple ways. We furthermore provide insight into the expression of leaderless mRNAs, which lack 5′ untranslated regions and are unusually prevalent in mycobacteria.


Sign in / Sign up

Export Citation Format

Share Document