scholarly journals The Split Personality of Beauveria bassiana: Understanding the Molecular Basis of Fungal Parasitism and Mutualism

mSystems ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Almudena Ortiz-Urquiza

Fungal pathogenicity toward insects has independently evolved several times, resulting in specialist and generalist pathogens, some of whom have maintained aspects of their previous lifestyles. Being able to grow as an endophyte (engaging in a mutualistic interaction with plants) or saprophyte (recycling nutrients back into the environment), the generalist (broad-host-range) fungus Beauveria bassiana does not need to rely on insect hosts to complete its life cycle.

2011 ◽  
Vol 56 (2) ◽  
pp. 783-786 ◽  
Author(s):  
Alessandra Carattoli ◽  
Laura Villa ◽  
Laurent Poirel ◽  
Rémy A. Bonnin ◽  
Patrice Nordmann

ABSTRACTTheblaNDM-1gene has been reported to be often located on broad-host-range plasmids of the IncA/C type in clinical but also environmental bacteria recovered from the New Delhi, India, area. IncA/C-type plasmids are the main vehicles for the spread of the cephalosporinase geneblaCMY-2, frequently identified in the United States, Canada, and Europe. In this study, we completed the sequence of IncA/C plasmid pNDM-KN carrying theblaNDM-1gene, recovered from aKlebsiella pneumoniaeisolate from Kenya. This sequence was compared with those of three IncA/C-type reference plasmids fromEscherichia coli,Yersinia ruckeri, andPhotobacterium damselae. Comparative analysis showed that theblaNDM-1gene was located on a widely diffused plasmid scaffold known to be responsible for the spread ofblaCMY-2-like genes and consequently for resistance to broad-spectrum cephalosporins. Considering that IncA/C plasmids possess a broad host range, this scaffold might support a large-scale diffusion of theblaNDM-1gene among Gram-negative rods.


2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Gabriele Arcari ◽  
Federica Maria Di Lella ◽  
Giulia Bibbolino ◽  
Fabio Mengoni ◽  
Marzia Beccaccioli ◽  
...  

ABSTRACT In this study, we investigated VIM-1-producing Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Citrobacter freundii, and Enterobacter cloacae strains, isolated in 2019 during a period of active surveillance of carbapenem-resistant Enterobacterales in a large university hospital in Italy. VIM-1-producing strains colonized the gut of patients, with up to three different VIM-1-positive bacterial species isolated from a single rectal swab, but also caused bloodstream infection in one colonized patient. In the multispecies cluster, blaVIM-1 was identified in a 5-gene cassette class 1 integron, associated with several genetic determinants, including the blaSHV-12, qnrS1, and mph(A) genes, located on a highly conjugative and broad-host-range IncA plasmid. The characteristics and origin of this IncA plasmid were studied.


2012 ◽  
Vol 79 (2) ◽  
pp. 718-721 ◽  
Author(s):  
F. Heath Damron ◽  
Elizabeth S. McKenney ◽  
Herbert P. Schweizer ◽  
Joanna B. Goldberg

ABSTRACTWe describe a mini-Tn7-based broad-host-range expression cassette for arabinose-inducible gene expression from the PBADpromoter. This delivery vector, pTJ1, can integrate a single copy of a gene into the chromosome of Gram-negative bacteria for diverse genetic applications, of which several are discussed, usingPseudomonas aeruginosaas the model host.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Irene Jiménez-Guerrero ◽  
Francisco Pérez-Montaño ◽  
Carlos Medina ◽  
Francisco Javier Ollero ◽  
Francisco Javier López-Baena

ABSTRACT The type III secretion system (T3SS) is a specialized secretion apparatus that is commonly used by many plant and animal pathogenic bacteria to deliver proteins, termed effectors, to the interior of the host cells. These effectors suppress host defenses and interfere with signal transduction pathways to promote infection. Some rhizobial strains possess a functional T3SS, which is involved in the suppression of host defense responses, host range determination, and symbiotic efficiency. The analysis of the genome of the broad-host-range rhizobial strain Sinorhizobium fredii HH103 identified eight genes that code for putative T3SS effectors. Three of these effectors, NopL, NopP, and NopI, are Rhizobium specific. In this work, we demonstrate that NopI, whose amino acid sequence shows a certain similarity with NopP, is secreted through the S. fredii HH103 T3SS in response to flavonoids. We also determined that NopL can be considered an effector since it is directly secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, the symbiotic phenotype of single, double, and triple nopI, nopL, and nopP mutants in soybean and cowpea was assayed, showing that NopI plays an important role in determining the number of nodules formed in both legumes and that the absence of both NopL and NopP is highly detrimental for symbiosis. IMPORTANCE The paper is focused on three Rhizobium-specific T3SS effectors of Sinorhizobium fredii HH103, NopL, NopP, and NopI. We demonstrate that S. fredii HH103 is able to secrete through the T3SS in response to flavonoids the nodulation outer protein NopI. Additionally, we determined that NopL can be considered an effector since it is secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, nodulation assays of soybean and cowpea indicated that NopI is important for the determination of the number of nodules formed and that the absence of both NopL and NopP negatively affected nodulation.


2018 ◽  
Vol 86 (8) ◽  
Author(s):  
Priscilla Branchu ◽  
Matt Bawn ◽  
Robert A. Kingsley

ABSTRACTSalmonella entericaserovar Typhimurium is one of approximately 2,500 distinct serovars of the genusSalmonellabut is exceptional in its wide distribution in the environment, livestock, and wild animals.S. Typhimurium causes a large proportion of nontyphoidalSalmonella(NTS) infections, accounting for a quarter of infections, second only toS. entericaserovar Enteritidis in incidence.S. Typhimurium was once considered the archetypal broad-host-rangeSalmonellaserovar due to its wide distribution in livestock and wild animals, and much of what we know of the interaction ofSalmonellawith the host comes from research using a small number of laboratory strains of the serovar (LT2, SL1344, and ATCC 14028). But it has become clear that these strains do not reflect the genotypic or phenotypic diversity ofS. Typhimurium. Here, we review the epidemiological record ofS. Typhimurium and studies of the host-pathogen interactions of diverse strains ofS. Typhimurium. We present the concept of distinct pathovariants ofS. Typhimurium that exhibit diversity of host range, distribution in the environment, pathogenicity, and risk to food safety. We review recent evidence from whole-genome sequencing that has revealed the extent of genomic diversity ofS. Typhimurium pathovariants, the genomic basis of differences in the level of risk to human and animal health, and the molecular epidemiology of prominent strains. An improved understanding of the impact of genome variation of bacterial pathogens on pathogen-host and pathogen-environment interactions has the potential to improve quantitative risk assessment and reveal how new pathogens evolve.


2018 ◽  
Vol 62 (4) ◽  
pp. e02128-17 ◽  
Author(s):  
Sead Hadziabdic ◽  
Jennie Fischer ◽  
Burkhard Malorny ◽  
Maria Borowiak ◽  
Beatriz Guerra ◽  
...  

ABSTRACT The emergence and spread of carbapenemase-producing Enterobacteriaceae (CPE) in wildlife and livestock animals pose an important safety concern for public health. With our in vivo broiler chicken infection study, we investigated the transfer and experimental microevolution of the blaNDM-1-carrying IncA/C2 plasmid (pRH-1238) introduced by avian native Salmonella enterica subsp. enterica serovar Corvallis without inducing antibiotic selection pressure. We evaluated the dependency of the time point of inoculation on donor (S. Corvallis [12-SA01738]) and plasmid-free Salmonella recipient [d-tartrate-fermenting (d-Ta+) S. Paratyphi B (13-SA01617), referred to here as S. Paratyphi B (d-Ta+)] excretion by quantifying their excretion dynamics. Using plasmid profiling by S1 nuclease-restricted pulsed-field gel electrophoresis, we gained insight into the variability of the native plasmid content among S. Corvallis reisolates as well as plasmid acquisition in S. Paratyphi B (d-Ta+) and the enterobacterial gut microflora. Whole-genome sequencing enabled us to gain an in-depth insight into the microevolution of plasmid pRH-1238 in S. Corvallis and enterobacterial recipient isolates. Our study revealed that the fecal excretion of avian native carbapenemase-producing S. Corvallis is significantly higher than that of S. Paratyphi (d-Ta+) and is not hampered by S. Paratyphi (d-Ta+). Acquisition of pRH-1238 in other Enterobacteriaceae and several events of plasmid pRH-1238 transfer to different Escherichia coli sequence types and Klebsiella pneumoniae demonstrated an interspecies broad host range. Regardless of the microevolutionary structural deletions in pRH-1238, the single carbapenem resistance marker blaNDM-1 was maintained on pRH-1238 throughout the trial. Furthermore, we showed the importance of the gut E. coli population as a vector of pRH-1238. In a potential scenario of the introduction of NDM-1-producing S. Corvallis into a broiler flock, the pRH-1238 plasmid could persist and spread to a broad host range even in the absence of antibiotic pressure.


2012 ◽  
Vol 86 (18) ◽  
pp. 10239-10239 ◽  
Author(s):  
Sanna Sillankorva ◽  
Andrew M. Kropinski ◽  
Joana Azeredo

The broad-host-range lyticPseudomonasphage Φ-S1 possess a 40,192 bp double-stranded DNA (dsDNA) genome of 47 open reading frames (ORFs) and belongs to the familyPodoviridae, subfamilyAutographivirinae, genusT7likevirus.


2020 ◽  
Vol 94 (12) ◽  
Author(s):  
Peipei Chen ◽  
Huzhi Sun ◽  
Huiying Ren ◽  
Wenhua Liu ◽  
Guimei Li ◽  
...  

ABSTRACT Bp7 is a T-even phage with a broad host range specific to Escherichia coli, including E. coli K-12. The receptor binding protein (RBP) of bacteriophages plays an important role in the phage adsorption process and determines phage host range, but the molecular mechanism involved in host recognition of phage Bp7 remains unknown. In this study, the interaction between phage Bp7 and E. coli K-12 was investigated. Based on homology alignment, amino acid sequence analysis, and a competitive assay, gp38, located at the tip of the long tail fiber, was identified as the RBP of phage Bp7. Using a combination of in vivo and in vitro approaches, including affinity chromatography, gene knockout mutagenesis, a phage plaque assay, and phage adsorption kinetics analysis, we identified the LamB and OmpC proteins on the surface of E. coli K-12 as specific receptors involved in the first step of reversible phage adsorption. Genomic analysis of the phage-resistant mutant strain E. coli K-12-R and complementation tests indicated that HepI of the inner core of polysaccharide acts as the second receptor recognized by phage Bp7 and is essential for successful phage infection. This observation provides an explanation of the broad host range of phage Bp7 and provides insight into phage-host interactions. IMPORTANCE The RBPs of T4-like phages are gp37 and gp38. The interaction between phage T4 RBP gp37 and its receptors has been clarified by many reports. However, the interaction between gp38 and its receptors during phage adsorption is still not completely understood. Here, we identified phage Bp7, which uses gp38 as an RBP, and provided a good model to study the phage-host interaction mechanisms in an enterobacteriophage. Our study revealed that gp38 of phage Bp7 recognizes the outer membrane proteins (OMPs) LamB and OmpC of E. coli K-12 as specific receptors and binds with them reversibly. HepI of the inner-core oligosaccharide is the second receptor and binds with phage Bp7 irreversibly to begin the infection process. Determining the interaction between the phage and its receptors will help elucidate the mechanisms of phage with a broad host range and help increase understanding of the phage infection mechanism based on gp38.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Feifei Zhao ◽  
Yu Feng ◽  
Xiaoju Lü ◽  
Alan McNally ◽  
Zhiyong Zong

ABSTRACT A Klebsiella pneumoniae strain of sequence type 313 (ST313) recovered from hospital sewage was found carrying the plasmid-borne colistin resistance gene mcr-1, which was bracketed by two copies of the insertion sequence ISApl1 on a 57-kb self-transmissible IncP-type plasmid of a new IncP-1 clade. The carriage of mcr-1 on a self-transmissible broad-host-range plasmid highlights that mcr-1 has the potential to spread beyond the Enterobacteriaceae family.


2011 ◽  
Vol 77 (8) ◽  
pp. 2648-2655 ◽  
Author(s):  
Rahmi Lale ◽  
Laila Berg ◽  
Friederike Stüttgen ◽  
Roman Netzer ◽  
Marit Stafsnes ◽  
...  

ABSTRACTThe induciblePmpromoter integrated into broad-host-range plasmid RK2 replicons can be fine-tuned continuously between the uninduced and maximally induced levels by varying the inducer concentrations. To lower the uninduced background level while still maintaining the inducibility for applications in, for example, metabolic engineering and synthetic (systems) biology, we report here the use of mutations in thePmDNA region corresponding to the 5′ untranslated region of mRNA (UTR). Five UTR variants obtained by doped oligonucleotide mutagenesis and selection, apparently reducing the efficiency of translation, were all found to display strongly reduced uninduced expression of three different reporter genes (encoding β-lactamase, luciferase, and phosphoglucomutase) inEscherichia coli. The ratio between induced and uninduced expression remained the same or higher compared to cells containing a corresponding plasmid with the wild-type UTR. Interestingly, the UTR variants also displayed similar effects on expression when substituted for the native UTR in another and constitutive promoter,P1(Pantitet), indicating a broad application potential of these UTR variants. Two of the selected variants were used to control the production of the C50carotenoid sarcinaxanthin in an engineered strain ofE. colithat produces the precursor lycopene. Sarcinaxanthin is produced in this particular strain by expressing threeMicrococcus luteusderived genes from the promoterPm. The results indicated that UTR variants can be used to eliminate sarcinaxanthin production under uninduced conditions, whereas cells containing the corresponding plasmid with a wild-type UTR produced ca. 25% of the level observed under induced conditions.


Sign in / Sign up

Export Citation Format

Share Document