scholarly journals The neonicotinoid insecticide thiamethoxam enhances expression of stress-response genes in Zea mays in an environmentally specific pattern

Genome ◽  
2020 ◽  
Author(s):  
Megan Alexandra House ◽  
Clarence J Swanton ◽  
Lewis N Lukens

Recent studies indicate that thiamethoxam (TMX), a neonicotinoid insecticide, can affect plant responses to environmental stressors, such as neighboring weeds. The molecular mechanisms behind both stable and environmentally-specific responses to TMX likely involve genes related to defense/stress responses. We investigated the effect of a TMX seed treatment on global gene expression in maize coleoptiles both under normal conditions and under low red to far-red (R/FR) light stress induced by the presence of neighboring plants. The neighboring plant treatment upregulated genes involved in biotic and abiotic stress responses and also affected specific photosynthesis and cell-growth related genes. Low R:FR light may enhance maize resistance to herbivores and pathogens. TMX appears to compromise resistance. The TMX treatment stably repressed many genes that encode proteins involved in biotic stress responses, as well as cell-growth genes. Notably, TMX effects on many genes’ expression were conditional on the environment. In response to low R:FR, plants treated with TMX engage genes in the JA, and other stress-related, response pathways. Neighboring weeds may condition TMX treated plants to become more stress tolerant.

Oncogenesis ◽  
2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Yu Geon Lee ◽  
Hui Won Kim ◽  
Yeji Nam ◽  
Kyeong Jin Shin ◽  
Yu Jin Lee ◽  
...  

AbstractMitochondrial proteases are key components in mitochondrial stress responses that maintain proteostasis and mitochondrial integrity in harsh environmental conditions, which leads to the acquisition of aggressive phenotypes, including chemoresistance and metastasis. However, the molecular mechanisms and exact role of mitochondrial proteases in cancer remain largely unexplored. Here, we identified functional crosstalk between LONP1 and ClpP, which are two mitochondrial matrix proteases that cooperate to attenuate proteotoxic stress and protect mitochondrial functions for cancer cell survival. LONP1 and ClpP genes closely localized on chromosome 19 and were co-expressed at high levels in most human cancers. Depletion of both genes synergistically attenuated cancer cell growth and induced cell death due to impaired mitochondrial functions and increased oxidative stress. Using mitochondrial matrix proteomic analysis with an engineered peroxidase (APEX)-mediated proximity biotinylation method, we identified the specific target substrates of these proteases, which were crucial components of mitochondrial functions, including oxidative phosphorylation, the TCA cycle, and amino acid and lipid metabolism. Furthermore, we found that LONP1 and ClpP shared many substrates, including serine hydroxymethyltransferase 2 (SHMT2). Inhibition of both LONP1 and ClpP additively increased the amount of unfolded SHMT2 protein and enhanced sensitivity to SHMT2 inhibitor, resulting in significantly reduced cell growth and increased cell death under metabolic stress. Additionally, prostate cancer patients with higher LONP1 and ClpP expression exhibited poorer survival. These results suggest that interventions targeting the mitochondrial proteostasis network via LONP1 and ClpP could be potential therapeutic strategies for cancer.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Mahbod Sahebi ◽  
Mohamed M. Hanafi ◽  
M. Y. Rafii ◽  
T. M. M. Mahmud ◽  
Parisa Azizi ◽  
...  

Drought tolerance is an important quantitative trait with multipart phenotypes that are often further complicated by plant phenology. Different types of environmental stresses, such as high irradiance, high temperatures, nutrient deficiencies, and toxicities, may challenge crops simultaneously; therefore, breeding for drought tolerance is very complicated. Interdisciplinary researchers have been attempting to dissect and comprehend the mechanisms of plant tolerance to drought stress using various methods; however, the limited success of molecular breeding and physiological approaches suggests that we rethink our strategies. Recent genetic techniques and genomics tools coupled with advances in breeding methodologies and precise phenotyping will likely reveal candidate genes and metabolic pathways underlying drought tolerance in crops. The WRKY transcription factors are involved in different biological processes in plant development. This zinc (Zn) finger protein family, particularly members that respond to and mediate stress responses, is exclusively found in plants. A total of 89 WRKY genes in japonica and 97 WRKY genes in O. nivara (OnWRKY) have been identified and mapped onto individual chromosomes. To increase the drought tolerance of rice (Oryza sativa L.), research programs should address the problem using a multidisciplinary strategy, including the interaction of plant phenology and multiple stresses, and the combination of drought tolerance traits with different genetic and genomics approaches, such as microarrays, quantitative trait loci (QTLs), WRKY gene family members with roles in drought tolerance, and transgenic crops. This review discusses the newest advances in plant physiology for the exact phenotyping of plant responses to drought to update methods of analysing drought tolerance in rice. Finally, based on the physiological/morphological and molecular mechanisms found in resistant parent lines, a strategy is suggested to select a particular environment and adapt suitable germplasm to that environment.


2013 ◽  
Vol 40 (9) ◽  
pp. 819 ◽  
Author(s):  
Dorothea Bartels ◽  
Challabathula Dinakar

Salinity is one of the major abiotic stress factors that drastically reduces agricultural productivity. In natural environments salinity often occurs together with other stresses such as dehydration, light stress or high temperature. Plants cope with ionic stress, dehydration and osmotic stress caused by high salinity through a variety of mechanisms at different levels involving physiological, biochemical and molecular processes. Halophytic plants exist successfully in stressful saline environments, but most of the terrestrial plants including all crop plants are glycophytes with varying levels of salt tolerance. An array of physiological, structural and biochemical adaptations in halophytes make them suitable models to study the molecular mechanisms associated with salinity tolerance. Comparative analysis of plants that differ in their abilities to tolerate salinity will aid in better understanding the phenomenon of salinity tolerance. The halophyte Thellungiella salsuginea has been used as a model for studying plant salt tolerance. In this review, T. salsuginea and the glycophyte Arabidopsis thaliana are compared with regards to their biochemical, physiological and molecular responses to salinity. In addition recent developments are presented for improvement of salinity tolerance in glycophytic plants using genes from halophytes.


2014 ◽  
Vol 83 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Mateusz Labudda ◽  
Fardous Mohammad Safiul Azam

Water is a renewable resource. However, with the human population growth, economic development and improved living standards, the world’s supply of fresh water is steadily decreasing and consequently water resources for agricultural production are limited and diminishing. Water deficiency is a significant problem in agriculture and increasing efforts are currently being made to understand plant tolerance mechanisms and to develop new tools (especially molecular) that could underpin plant breeding and cultivation. However, the biochemical and molecular mechanisms of plant water deficit tolerance are not fully understood, and the data available is incomplete. Here, we review the significance of glutathione and its related enzymes in plant responses to drought. Firstly, the roles of reduced glutathione and reduced/oxidized glutathione ratio, are discussed, followed by an extensive discussion of glutathione related enzymes, which play an important role in plant responses to drought. Special attention is given to the S-glutathionylation of proteins, which is involved in cell metabolism regulation and redox signaling in photosynthetic organisms subjected to abiotic stress. The review concludes with a brief overview of future perspectives for the involvement of glutathione and related enzymes in drought stress responses.


2021 ◽  
Author(s):  
Yoichi Hashida ◽  
Ayumi Tezuka ◽  
Yasuyuki Nomura ◽  
Mari Kamitani ◽  
Makoto Kashima ◽  
...  

The differences between plants grown in field and controlled environments have long been recognised; however, few studies have addressed the underlying molecular mechanisms. Here, we show fillable and unfillable gaps in the transcriptomes of rice grown in field and controlled environments by utilising SmartGC, a high-performance growth chamber that reproduces the fluctuating irradiance, temperature, and humidity of field environments. Rice transcriptome dynamics in SmartGC mimicked those in the field, particularly during the morning and evening; those in conventional growth chamber conditions did not. Further analysis revealed that fluctuation of irradiance affects transcriptome dynamics in the morning and evening, while fluctuation of temperature only affects transcriptome dynamics in the morning. We found upregulation of genes related to biotic and abiotic stress, whose expression was affected by environmental factors that cannot be mimicked by SmartGC. Our results accelerate the understanding of plant responses to field environments for both field and laboratory studies.


2020 ◽  
Author(s):  
Salini Konikkat ◽  
Michelle R. Scribner ◽  
Rory Eutsey ◽  
N. Luisa Hiller ◽  
Vaughn S. Cooper ◽  
...  

ABSTRACTP. aeruginosa produces serious chronic infections in hospitalized patients and immunocompromised individuals, including cystic fibrosis patients. The molecular mechanisms by which P. aeruginosa responds to antibiotics and other stresses to promote persistent infections may provide new avenues for therapeutic intervention. Azithromycin (AZM), an antibiotic frequently used in cystic fibrosis treatment, is thought to improve clinical outcomes through a number of mechanisms including impaired biofilm growth and QS. The mechanisms underlying the transcriptional response to AZM remain unclear. Here, we interrogated the P. aeruginosa transcriptional response to AZM using an improved genome-wide approach to quantitate RNA 3’-ends (3pMap). We also identified hundreds of P. aeruginosa genes subject to premature transcription termination in their transcript leaders using 3pMap. AZM treatment of planktonic and biofilm cultures alters the expression of hundreds of genes, including those involved in QS, biofilm formation, and virulence. Strikingly, most genes downregulated by AZM in biofilms had increased levels of intragenic 3’-ends indicating premature transcription termination or pausing. Reciprocally, AZM reduced premature transcription termination in many upregulated genes. Most notably, reduced termination accompanied robust induction of obgE, a GTPase involved in persister formation in P. aeruginosa. Our results support a model in which AZM-induced premature transcription termination downregulates expression of central transcriptional regulators, which in turn both impairs QS and biofilm formation, and stress responses, while upregulating genes associated with persistence.


Plants ◽  
2014 ◽  
Vol 3 (4) ◽  
pp. 458-475 ◽  
Author(s):  
Ines Rejeb ◽  
Victoria Pastor ◽  
Brigitte Mauch-Mani

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1508
Author(s):  
Pramod Rathor ◽  
Tudor Borza ◽  
Yanhui Liu ◽  
Yuan Qin ◽  
Sophia Stone ◽  
...  

Mannitol is abundant in a wide range of organisms, playing important roles in biotic and abiotic stress responses. Nonetheless, mannitol is not produced by a vast majority of plants, including many important crop plants. Mannitol-producing transgenic plants displayed improved tolerance to salt stresses though mannitol production was rather low, in the µM range, compared to mM range found in plants that innately produce mannitol. Little is known about the molecular mechanisms underlying salt tolerance triggered by low concentrations of mannitol. Reported here is the production of mannitol in Arabidopsis thaliana, by expressing two mannitol biosynthesis genes from the brown alga Ectocarpus sp. strain Ec32. To date, no brown algal genes have been successfully expressed in land plants. Expression of mannitol-1-phosphate dehydrogenase and mannitol-1-phosphatase genes was associated with the production of 42.3–52.7 nmol g−1 fresh weight of mannitol, which was sufficient to impart salinity and temperature stress tolerance. Transcriptomics revealed significant differences in the expression of numerous genes, in standard and salinity stress conditions, including genes involved in K+ homeostasis, ROS signaling, plant development, photosynthesis, ABA signaling and secondary metabolism. These results suggest that the improved tolerance to salinity stress observed in transgenic plants producing mannitol in µM range is achieved by the activation of a significant number of genes, many of which are involved in priming and modulating the expression of genes involved in a variety of functions including hormone signaling, osmotic and oxidative stress, and ion homeostasis.


Author(s):  
Patrícia Juliana Lopes-Oliveira ◽  
Halley Caixeta Oliveira ◽  
Zsuzsanna Kolbert ◽  
Luciano Freschi

Abstract Light drives photosynthesis and informs plants about their surroundings. Regarded as a multifunctional signaling molecule in plants, nitric oxide (NO) has been repeatedly demonstrated to interact with light signaling cascades to control plant growth, development and metabolism. During early plant development, light-triggered NO accumulation counteracts negative regulators of photomorphogenesis and modulates the abundance of, and sensitivity to, plant hormones to promote seed germination and de-etiolation. In photosynthetically active tissues, NO is generated at distinct rates under light or dark conditions and acts at multiple target sites within chloroplasts to regulate photosynthetic reactions. Moreover, changes in NO concentrations in response to light stress promote plant defenses against oxidative stress under high light or ultraviolet-B radiation. Here we review the literature on the interaction of NO with the complicated light and hormonal signaling cascades controlling plant photomorphogenesis and light stress responses, focusing on the recently identified molecular partners and action mechanisms of NO in these events. We also discuss the versatile role of NO in regulating both photosynthesis and light-dependent stomatal movements, two key determinants of plant carbon gain. The regulation of nitrate reductase (NR) by light is highlighted as vital to adjust NO production in plants living under natural light conditions.


2013 ◽  
Vol 40 (12) ◽  
pp. 1221 ◽  
Author(s):  
Himabindu Kudapa ◽  
Abirami Ramalingam ◽  
Swapna Nayakoti ◽  
Xiaoping Chen ◽  
Wei-Jian Zhuang ◽  
...  

Legumes are important food crops worldwide, contributing to more than 33% of human dietary protein. The production of crop legumes is frequently impacted by abiotic and biotic stresses. It is therefore important to identify genes conferring resistance to biotic stresses and tolerance to abiotic stresses that can be used to both understand molecular mechanisms of plant response to the environment and to accelerate crop improvement. Recent advances in genomics offer a range of approaches such as the sequencing of genomes and transcriptomes, gene expression microarray as well as RNA-seq based gene expression profiling, and map-based cloning for the identification and isolation of biotic and abiotic stress-responsive genes in several crop legumes. These candidate stress associated genes should provide insights into the molecular mechanisms of stress tolerance and ultimately help to develop legume varieties with improved stress tolerance and productivity under adverse conditions. This review provides an overview on recent advances in the functional genomics of crop legumes that includes the discovery as well as validation of candidate genes.


Sign in / Sign up

Export Citation Format

Share Document