Genotoxicity of cis-Pt(II) complex of 3-aminoflavone in comparison with cis-DDP in A549 cells evaluated by comet assay

2004 ◽  
Vol 82 (5) ◽  
pp. 353-358 ◽  
Author(s):  
Beata Kosmider ◽  
Elzbieta Zyner ◽  
Regina Osiecka ◽  
Justyn Ochocki

Cis-diamminedichloroplatinum(II) (cis-DDP) is one of the most successful antineoplastic drugs. However, besides effectiveness it gives many side effects. Therefore, current studies are concentrated on searching for new analogs equally effective in chemotherapy but less toxic. Comparison of genotoxic properties of cis-Pt(II) complex of 3-aminoflavone and cis-DDP in a comet assay with and without H2O2 application was performed in A549 cell line. The higher tail moment values were noticed for the former compound contrary to the latter one in both variants. It suggests mainly DNA breaks (besides cross-links) appearance after cis-Pt(II) complex of 3-aminoflavone application and might indicate DNA degradation in comparison with cis-DDP.Key words: cis-Pt(II) complex of 3-aminoflavone, cis-DDP, comet assay, A549 cells.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
J. S. Weissenrieder ◽  
J. D. Weissenkampen ◽  
J. L. Reed ◽  
M. V. Green ◽  
C. Zheng ◽  
...  

AbstractThe schweinfurthin family of natural compounds exhibit a unique and potent differential cytotoxicity against a number of cancer cell lines and may reduce tumor growth in vivo. In some cell lines, such as SF-295 glioma cells, schweinfurthins elicit cytotoxicity at nanomolar concentrations. However, other cell lines, like A549 lung cancer cells, are resistant to schweinfurthin treatment up to micromolar concentrations. At this time, the precise mechanism of action and target for these compounds is unknown. Here, we employ RNA sequencing of cells treated with 50 nM schweinfurthin analog TTI-3066 for 6 and 24 h to elucidate potential mechanisms and pathways which may contribute to schweinfurthin sensitivity and resistance. The data was analyzed via an interaction model to observe differential behaviors between sensitive SF-295 and resistant A549 cell lines. We show that metabolic and stress-response pathways were differentially regulated in the sensitive SF-295 cell line as compared with the resistant A549 cell line. In contrast, A549 cell had significant alterations in response genes involved in translation and protein metabolism. Overall, there was a significant interaction effect for translational proteins, RNA metabolism, protein metabolism, and metabolic genes. Members of the Hedgehog pathway were differentially regulated in the resistant A549 cell line at both early and late time points, suggesting a potential mechanism of resistance. Indeed, when cotreated with the Smoothened inhibitor cyclopamine, A549 cells became more sensitive to schweinfurthin treatment. This study therefore identifies a key interplay with the Hedgehog pathway that modulates sensitivity to the schweinfurthin class of compounds.


2020 ◽  
Vol 11 (11) ◽  
pp. 260-268
Author(s):  
Lalitha G. ◽  
Nazeema TH

Our study examined for the inhibitory effect of ethanolic extract of Eleagnus Conferta Roxb leaves on TNF –α induced NF- kB nuclear translocation in lung cancer A549 cell line using flow cytometry. Apoptosis also studied to know about the antiproliferative and anticancer effects. However, our results revealed in apoptosis, Elaeagnus conferta Roxb leaves showed (33.54%) increased in proportion of cells. In the study of pre-treatment of A549 cells with Elaeagnus conferta Roxb leaves followed by TNF- α caused the increased proportion of cells (20.78%) at apoptosis induced cell death, which was statistically significant (p< 0.001). The untreated A549 cells had minimal NF-kB expression (0.25± 0.01%). However, the approach of A549 cells with Elaeagnus conferta Roxb had induced NF-kB production many fold (11.50± 1.05%). Therefore, we conclude our study was proved the impact of Elaeagnus conferta Roxb leaves inhibit the cellular growth of NSCLC-A549 cell line and induces apoptosis. Hence, from our findings, we proved this plant has anticancer activity, further feasibly taken for drug formulation.


Author(s):  
J.M. Fadool ◽  
P.J. Boyer ◽  
S.K. Aggarwal

Cisplatin (CDDP) is currently one of the most valuable antineoplastic drugs available. However, it has severe toxic side effects of which nephrotoxicity is the major dose limiting factor in its use. It induces morphological changes in the kidney with hampered urine output. The present study is an effort to determine the influence of the drug on the neurohypophysis for any antidiuretic effects on the kidney.


Author(s):  
Damián Muruzabal ◽  
Julen Sanz-Serrano ◽  
Sylvie Sauvaigo ◽  
Bertrand Treillard ◽  
Ann-Karin Olsen ◽  
...  

AbstractMechanistic toxicology is gaining weight for human health risk assessment. Different mechanistic assays are available, such as the comet assay, which detects DNA damage at the level of individual cells. However, the conventional alkaline version only detects strand breaks and alkali-labile sites. We have validated two modifications of the in vitro assay to generate mechanistic information: (1) use of DNA-repair enzymes (i.e., formamidopyrimidine DNA glycosylase, endonuclease III, human 8-oxoguanine DNA glycosylase I and human alkyladenine DNA glycosylase) for detection of oxidized and alkylated bases as well as (2) a modification for detecting cross-links. Seven genotoxicants with different mechanisms of action (potassium bromate, methyl methanesulfonate, ethyl methanesulfonate, hydrogen peroxide, cisplatin, mitomycin C, and benzo[a]pyrene diol epoxide), as well as a non-genotoxic compound (dimethyl sulfoxide) and a cytotoxic compound (Triton X-100) were tested on TK-6 cells. We were able to detect with high sensitivity and clearly differentiate oxidizing, alkylating and cross-linking agents. These modifications of the comet assay significantly increase its sensitivity and its specificity towards DNA lesions, providing mechanistic information regarding the type of damage.


2006 ◽  
Vol 838 (1) ◽  
pp. 15-20 ◽  
Author(s):  
Toyofumi Nakanishi ◽  
Toru Takeuchi ◽  
Kazuhito Ueda ◽  
Hitoshi Murao ◽  
Akira Shimizu

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shao-Yuan Chen ◽  
Koichi Tsuneyama ◽  
Mao-Hsiung Yen ◽  
Jiunn-Tay Lee ◽  
Jiun-Liang Chen ◽  
...  

AbstractTumor cells have long been recognized as a relative contraindication to hyperbaric oxygen treatment (HBOT) since HBOT might enhance progressive cancer growth. However, in an oxygen deficit condition, tumor cells are more progressive and can be metastatic. HBOT increasing in oxygen partial pressure may benefit tumor suppression. In this study, we investigated the effects of HBOT on solid tumors, such as lung cancer. Non-small cell human lung carcinoma A549-cell-transferred severe combined immunodeficiency mice (SCID) mice were selected as an in vivo model to detect the potential mechanism of HBOT in lung tumors. HBOT not only improved tumor hypoxia but also suppressed tumor growth in murine xenograft tumor models. Platelet endothelial cell adhesion molecule (PECAM-1/CD31) was significantly increased after HBOT. Immunostaining of cleaved caspase-3 was demonstrated and apoptotic tumor cells with nuclear debris were aggregated starting on the 14th-day after HBOT. In vitro, HBOT suppressed the growth of A549 cells in a time-dependent manner and immediately downregulated the expression of p53 protein after HBOT in A549 cells. Furthermore, HBOT-reduced p53 protein could be rescued by a proteasome degradation inhibitor, but not an autophagy inhibitor in A549 cells. Our results demonstrated that HBOT improved tissue angiogenesis, tumor hypoxia and increased tumor apoptosis to lung cancer cells in murine xenograft tumor models, through modifying the tumor hypoxic microenvironment. HBOT will merit further cancer therapy as an adjuvant treatment for solid tumors, such as lung cancer.


HNO ◽  
2021 ◽  
Author(s):  
F. Wiest ◽  
A. Scherzad ◽  
P. Ickrath ◽  
N. Poier ◽  
S. Hackenberg ◽  
...  

Zusammenfassung Hintergrund Die E‑Zigarette erfreut sich in den letzten Jahren zunehmender Beliebtheit. Die Frage nach der Toxizität ist jedoch noch nicht eindeutig geklärt, und es herrscht global Unsicherheit im Umgang mit der E‑Zigarette. Ziel Ziel der vorliegenden Arbeit war es, Propylenglykol, ein Hauptbestandteil der Liquide, in Bezug auf mögliche akute Entzündungsreaktionen, zyto- und genotoxische Auswirkungen auf humane Nasenschleimhautzellen zu untersuchen. Material und Methoden Die Nasenschleimhautzellen wurden von zehn Probanden im Air-Liquid-Interface kultiviert und anschließend mit unterschiedlichen Konzentrationen des Propylenglykols bedampft. Die Analyse erfolgte mittels Trypanblau-Test, Comet-Assay, Mikrokerntest und IL-6- und IL-8-Sandwich-ELISA. Ergebnis Der Trypanblau-Test zeigte keine Reduktion der Vitalität. Im Sandwich-ELISA konnte kein Anstieg der IL-6- und IL-8-Konzentrationen nachgewiesen werden. Im Comet-Assay zeigte das Olive Tail Moment eine Schädigung im Vergleich zur Negativkontrolle in allen untersuchten Konzentrationen. Zudem zeigte sich eine dosisabhängige Schädigung. Im Mikrokerntest konnte ein Unterschied zwischen dem Reinstoff und der Negativkontrolle gefunden werden. Schlussfolgerung Es zeigten sich möglicherweise reparable DNS-Schädigungen im Comet-Assay. Im Mikrokerntest konnten diese nur in der Reinstoffkonzentration bestätigt werden. Es sollte ein restriktiver Umgang mit der E‑Zigarette erfolgen, bis insbesondere Langzeitstudien vorliegen. Zudem ist eine eindeutige Deklaration der Inhaltsstoffe der Liquide durch die Hersteller zu fordern, um weitergehende Schädigungspotenziale untersuchen zu können.


1997 ◽  
Vol 16 (11) ◽  
pp. 636-644 ◽  
Author(s):  
Christopher D Lindsay ◽  
Joy L Hambrook ◽  
Alison F Lailey

1 The A549 cell line was used to assess the toxicity of sulphur mustard (HD), using gentian violet (GV) and neutral red (NR) dyes as indicators of cell viability. It was found that exposure to concentrations in excess of 40 ?M HD resulted in a rapid onset of toxicity. 2 The ability of monoisopropylglutathione ester (MIPE) to protect A549 cells against the effects of a 100 ?M challenge dose ofHD was determined using the NR and GV assays. It was found that MIPE (8 mM) could protect cells against the effects ofHD though MIPE had to be present at the time of HD challenge. Cultures protected with MIPE were two times more viable than HD exposed cells 48 h after HD challenge when using the GV and NR assays to assess viability. Observations by phase contrast microscopy of NR and GV stained cultures confirmed these findings. Addition of MIPE after previously exposing the A549 cultures to HD (for up to 5 min) maintained cell viability at 72% compared to 37% for unprotected cultures, after which time viability fell significantly so that at 10 min there was no difference in viability between the MIPE treated and untreated cultures. 3 Pretreating A549 cultures with MIPE for 1 h followed by its removal prior to HD challenge did not maintain cell viability. Treatment of cultures with HD for 1 h followed by addition of MIPE did not maintain the viability of the cultures, thus the window within which it was possible for MIPE to rescue cell cultures from the effects of HD was of short duration. 4 High performance liquid chromatography was used to determine the biochemical basis of the actions of MIPE. It was found that whilst intracellular levels of cysteine were increased up to 40-fold following treatment of A549 cell cultures with MIPE, levels of reduced glutathione did not rise. The lack of protection seen in cultures pretreated with MIPE for 1 h prior to HD exposure suggests that raising intracellular cysteine levels was not an effective strategy for protecting cells from the effects of HD. The protection observed is probably due to extra cellular inactivation of HD by MIPE.


Sign in / Sign up

Export Citation Format

Share Document