Monoisopropylglutathione ester protects A549 cells from the cytotoxic effects of sulphur mustard

1997 ◽  
Vol 16 (11) ◽  
pp. 636-644 ◽  
Author(s):  
Christopher D Lindsay ◽  
Joy L Hambrook ◽  
Alison F Lailey

1 The A549 cell line was used to assess the toxicity of sulphur mustard (HD), using gentian violet (GV) and neutral red (NR) dyes as indicators of cell viability. It was found that exposure to concentrations in excess of 40 ?M HD resulted in a rapid onset of toxicity. 2 The ability of monoisopropylglutathione ester (MIPE) to protect A549 cells against the effects of a 100 ?M challenge dose ofHD was determined using the NR and GV assays. It was found that MIPE (8 mM) could protect cells against the effects ofHD though MIPE had to be present at the time of HD challenge. Cultures protected with MIPE were two times more viable than HD exposed cells 48 h after HD challenge when using the GV and NR assays to assess viability. Observations by phase contrast microscopy of NR and GV stained cultures confirmed these findings. Addition of MIPE after previously exposing the A549 cultures to HD (for up to 5 min) maintained cell viability at 72% compared to 37% for unprotected cultures, after which time viability fell significantly so that at 10 min there was no difference in viability between the MIPE treated and untreated cultures. 3 Pretreating A549 cultures with MIPE for 1 h followed by its removal prior to HD challenge did not maintain cell viability. Treatment of cultures with HD for 1 h followed by addition of MIPE did not maintain the viability of the cultures, thus the window within which it was possible for MIPE to rescue cell cultures from the effects of HD was of short duration. 4 High performance liquid chromatography was used to determine the biochemical basis of the actions of MIPE. It was found that whilst intracellular levels of cysteine were increased up to 40-fold following treatment of A549 cell cultures with MIPE, levels of reduced glutathione did not rise. The lack of protection seen in cultures pretreated with MIPE for 1 h prior to HD exposure suggests that raising intracellular cysteine levels was not an effective strategy for protecting cells from the effects of HD. The protection observed is probably due to extra cellular inactivation of HD by MIPE.

1997 ◽  
Vol 16 (2) ◽  
pp. 106-114 ◽  
Author(s):  
Christopher D Lindsay ◽  
Joy L Hambrook

The A549 cell line was used as a model of the deep lung to study the toxicity and mechanism of action of sulphur mustard (HD), using the neutral red (NR) dye retention and gentian violet (GV) assays as indices of cell viability. It was found that exposure to concentrations in excess of 40 μM HD resulted in a rapid onset of toxicity. Exposure to 1000 μM HD reduced viability in A549 cell cultures to 61% after 2 h (control cultures=100%), whereas exposure to 40 μM HD did not result in deleterious effects until 26 h at which point viability fell to only 84% (NR assay). Agarose gel electrophoresis of cell cultures exposed to 40 and 1000 μM HD and harvested at 4.5, 19 and 43 h after exposure to HD, indicated that cell death was due to necrosis, despite the observation that at the higher concentration of HD cells displayed many of the features common to cells undergoing apoptotic death. The ability of hexamethylenetetramine (HMT) to protect A549 cells against the effects of an LC50 challenge dose of HD was assessed using the GV and NR assays. It was found that HMT (15 mM) could protect cells against the effects of HD though HMT had to be present at the time of HD challenge. Cultures treated with HD only were 49% viable at 48 h after HD challenge, compared to 101% for protected cultures (NR assay) and 58% and 91% for unprotected and protected cultures respectively using the GV assay. Morphological observations of GV and NR stained cultures confirmed these findings. HMT concen trations of 2.5 to 25 mM were used. Maximal protection against the toxic effects of HD (LC50) was found at 10 to 25 mM HMT. Over this concentration range, HMT did not exert any toxic effects on A549 cells. Pretreatment of A549 cultures with HMT followed by its removal prior to HD challenge had no protective effect. Similarly, treating cultures with HD followed by addition of HMT did not increase the viability of the cultures, even if the HMT was added immediately after HD exposure. HMT was found to protect against the toxic effects ofHD, though it must be present at the time ofHD challenge. A549 cells were found to be a valuable experimental model for studying the toxicology of HD and other lung damaging agents, and for screening other compounds for potential therapeutic efficacy as a prelude to studies with non- transformed cell culture systems and in vivo models.


1998 ◽  
Vol 17 (11) ◽  
pp. 606-612 ◽  
Author(s):  
Christopher D Lindsay ◽  
Joy L Hambrook

The A549 cell line was used to assess the ability of diisopropylglutathione (DIPE) to protect against a 100 mM challenge dose of sulphur mustard (HD) using gentian violet (GV), thiazolyl blue (MTT) and neutral red (NR) assays as indicators of cell culture viability. As part of a continuing study of the efficacy of protective nucleophiles as candidate treatments for HD poisoning, several different combinations of protectant and HD were used to determine the optimal means of protecting A549 cells from the effects of HD. It was found that DIPE (4 mM) could protect cells against the effects of HD though for optimal effect, DIPE had to be present at the time of HD challenge. Cultures protected with DIPE were up to 2.9- fold more viable than HD exposed cells 48 h after HD challenge when using the GV, MTT and NR assays to assess viability. Observations by phase contrast microscopy of GV stained cultures confirmed these findings. Pretreating A549 cultures with DIPE for 1 h followed by its removal prior to HD challenge did maintain cell viability, though at a relatively low level (only up to 1.4- fold more viable than HD only exposed cells). DIPE was also able to protect HD exposed A549 cultures when added to cell cultures at intervals of up to 12 to 15 min after the initial HD exposure, though viability tended to decrease over this period, so that at 1 h, addition of DIPE did not maintain the viability of the cultures. This is the first such report of the anti-HD protectant properties of DIPE in A549 cells. It is concluded that the protection observed against HD is probably largely due to extracellular inactivation of HD by DIPE.


Author(s):  
Wei-Zhen Liu ◽  
Nian Liu

Propofol has been widely used in lung cancer resections. Some studies have demonstrated that the effects of propofol might be mediated by microRNAs (miRNAs). This study aimed to investigate the effects and mechanisms of propofol on lung cancer cells by regulation of miR-1284. A549 cells were treated with different concentrations of propofol, while transfected with miR-1284 inhibitor, si-FOXM1, and their negative controls. Cell viability, migration, and invasion, and the expression of miR-1284, FOXM1, and epithelial‐mesenchymal transition (EMT) factors were detected by CCK-8, Transwell, qRT-PCR, and Western blot assays, respectively. In addition, the regulatory and binding relationships among propofol, miR-1284, and FOXM1 were assessed, respectively. Results showed that propofol suppressed A549 cell viability, migration, and invasion, upregulated E-cadherin, and downregulated N-cadherin, vimentin, and Snail expressions. Moreover, propofol significantly promoted the expression of miR-1284. miR-1284 suppression abolished propofol-induced decreases of cell viability, migration, and invasion, and increased FOXM1 expression and the luciferase activity of FOXM1-wt. Further, miR-1284 negatively regulated FOXM1 expression. FOXM1 knockdown reduced cell viability, migration, and invasion by propofol treatment plus miR-1284 suppression. In conclusion, our study indicated that propofol could inhibit cell viability, migration, invasion, and the EMT process in lung cancer cells by regulation of miR-1284.


2021 ◽  
Author(s):  
Baiye Xu ◽  
Haidao Wang ◽  
Zhen Chen

Abstract Background: Ferroptosis is a new type of programmed cell death, which plays an important role in lung injury caused by sepsis. Studies have reported that Puerarin (Pue) can treat lung injury caused by sepsis in children, but whether it plays a role by regulating iron death has not been reported.Methods: LPS induced human alveolar epithelial cell A549 to form a model of lung injury caused by sepsis. MTT detected the effect of Pue on A549 cell viability and the effect of Pue on LPS-induced A549 cell viability. The effects of Pue on LPS-induced inflammatory cytokines TNF-α, IL-8, IL-1β in A549 cells were determined by ELISA assay. The expression level of MDA was detected by TBARS colorimetric quantitative detection kit. GSH kit was used to detect the expression of GSH in cells. The iron kit detected the total iron level and the expression level of ferric divalent ions in the cells. DCFH-DA fluorescent probe was used to detect ROS levels. Western blot was used to detect the expression of ferroptosis-related proteins in cells. Results: Pue alleviated LPS-induced injury and inflammatory response in A549 cells, and Pue reduced the expression of ROS, MDA and GSH in LPS-induced A549 cells. In addition, Pue reduced total iron levels and ferrous ion levels in LPS-induced A549 cells, and decreased the expression of iron ferroptosis-related proteins. Conclusion: Puerarin inhibited ferroptosis and inflammation of lung injury caused by sepsis in children in LPS induced lung epithelial cells.


2021 ◽  
Vol 9 ◽  
Author(s):  
Baiye Xu ◽  
Haidao Wang ◽  
Zhen Chen

Background: Ferroptosis is a new type of programmed cell death, which plays an important role in lung injury caused by sepsis. Studies have reported that Puerarin (Pue) can treat lung injury caused by sepsis in children, but whether it plays a role by regulating iron death has not been reported.Methods: LPS induced human alveolar epithelial cell A549 to form a model of lung injury caused by sepsis. MTT detected the effect of Pue on A549 cell viability and the effect of Pue on LPS-induced A549 cell viability. The effects of Pue on LPS-induced inflammatory cytokines TNF-α, IL-8, IL-1β in A549 cells were determined by ELISA assay. The expression level of MDA was detected by TBARS colorimetric quantitative detection kit. GSH kit was used to detect the expression of GSH in cells. The iron kit detected the total iron level and the expression level of ferric divalent ions in the cells. DCFH-DA fluorescent probe was used to detect ROS levels. Western blot was used to detect the expression of ferroptosis-related proteins in cells.Results: Pue alleviated LPS-induced injury and inflammatory response in A549 cells, and Pue reduced the expression of ROS, MDA and GSH in LPS-induced A549 cells. In addition, Pue reduced total iron levels and ferrous ion levels in LPS-induced A549 cells, and decreased the expression of iron ferroptosis-related proteins.Conclusion: Puerarin inhibited ferroptosis and inflammation of lung injury caused by sepsis in children in LPS induced lung epithelial cells.


2013 ◽  
Vol 91 (4) ◽  
pp. 244-251 ◽  
Author(s):  
Feng-xia Wang ◽  
Ning Wu ◽  
Jian-teng Wei ◽  
Jia Liu ◽  
Jin Zhao ◽  
...  

Eupolyphaga sinensis Walker is an important insect used in Chinese traditional medicine. In this study, we purified a 72-kDa anticancer protein, designated as EPS72, from this species using ammonium sulfate precipitation, ultrafiltration, CM Sepharose Fast Flow cation exchange, Q Sepharose High Performance (HP) anion exchange, Butyl Sepharose HP hydrophobic chromatography, and Superdex 75 gel filtration chromatographic techniques. EPS72 exhibited a potent anticancer activity against the human lung cancer A549 cell line (IC50, 18.76 μg/mL). Further study showed that EPS72 could induce A549 cell detachment and apoptosis, inhibit cell adhesion to fibronectin and collagen IV, and restrain cell migration and invasion. Moreover, EPS72 significantly decreased the expression of β1-integrin. This study suggests that EPS72 could potentially be developed as a novel anticancer therapeutic agent due to its possible antimetastatic activity.


2021 ◽  
Vol 16 (1) ◽  
pp. 961-968
Author(s):  
Guang-Yan Zhang ◽  
Wei-Yong Chen ◽  
Xiao-Bo Li ◽  
Hua Ke ◽  
Xue-Lin Zhou

Abstract Scutellarin plays an anti-tumor role in A549 lung cancer cells, but the underlying mechanism is unclear. In this study, scutellarin was used to treat A549 cells for 12, 24, and 48 h, followed by the addition of Tempo, a selective scavenger of mitochondrial reactive oxygen species (ROS) and SB431542, a transforming growth factor (TGF)-β1 receptor inhibitor. A dihydroethidium fluorescence probe was used to measure the intracellular ROS level, Cell Counting Kit-8 (CCK-8) was used to detect cell viability, and flow cytometry was performed to examine apoptosis. Western blots were used to detect the total protein level of TGF-β1, p-smad2, and cleaved caspase-3 in A549 cells. The results showed that scutellarin significantly inhibited cell viability and increased apoptosis. Scutellarin also promoted intracellular ROS production, TGF-β1/smad2 signaling pathway activation, and cleaved caspase-3 expression, which was partly reversed by Tempo. Moreover, scutellarin-induced intracellular ROS production and cleaved caspase-3 expression were inhibited by blocking the TGF-β1/smad2 pathway with SB431542. In conclusion, scutellarin promoted apoptosis and intracellular ROS accumulation, which could be abrogated by Tempo and SB431542 treatment in A549 cells. Our study indicated that scutellarin induced A549 cell apoptosis via the TGF-β1/smad2/ROS/caspase-3 pathway.


2021 ◽  
Author(s):  
Yun Gui ◽  
Jing Cheng ◽  
Zhiguo Chen

Abstract Oridonin, a compound from Rabdosia rubescens, has been shown to have a potency for the improvement of the antitumor effect of lentinan (LNT). In this study, we tested the effect of oridonin, LNT, and the combination of them on a normal human fetal lung fibroblast cell line MRC-5 and non-small cell lung cancer cell line A549. Then we tested their effects on metastasis and survival with a lung cancer mice model. The effects of them on the mRNA and protein expression of several regulatory factors in A549 and lung tissue were determined by QPCR and western blotting. Results showed that the viability of MRC-5 and A549 were not affected by 0-20 µg/ml oridonin. 0-300 µg/ml LNT did not affect the viability of MRC-5, but 50-400 µg/ml LNT inhibited the viability of A549. 20 µg/ml oridonin and 100 or 300 µg/ml LNT were used in the subsequent study. The oridonin, LNT, or the combination of both had no effect on MRC-5 cell viability. The oridonin had no effect on A549 cell viability but LNT suppressed A549 cell viability, and oridonin promoted the suppression of LNT on A549 cells. In vivo study showed that oridonin alone had no effect on metastasis and survival but LNT decreased metastasis and survival in mice. Oridonin improved the suppression of LNT against metastasis and further improved the survival rate. In both A549 and lung tissues, LNT increased the mRNA and protein expression of caspase-3, caspase-8, caspase-9, Bax, p53, p21, and IκB-α, reduced mRNA and protein expressions of Bcl-2 and NF-κB. Oridonin enhanced all the effects of LNT on cells. Our study demonstrated that oridonin enhanced the antitumor effects of LNT and is conducive to the development of oridonin and LNT as a novel cancer drug regimen.


2018 ◽  
Vol 18 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Aikebaier Maimaiti ◽  
Amier Aili ◽  
Hureshitanmu Kuerban ◽  
Xuejun Li

Aims: Gallic acid (GA) is generally distributed in a variety of plants and foods, and possesses cell growth-inhibiting activities in cancer cell lines. In the present study, the impact of GA on cell viability, apoptosis induction and possible molecular mechanisms in cultured A549 lung carcinoma cells was investigated. Methods: In vitro experiments showed that treating A549 cells with various concentrations of GA inhibited cell viability and induced apoptosis in a dose-dependent manner. In order to understand the mechanism by which GA inhibits cell viability, comparative proteomic analysis was applied. The changed proteins were identified by Western blot and siRNA methods. Results: Two-dimensional electrophoresis revealed changes that occurred to the cells when treated with or without GA. Four up-regulated protein spots were clearly identified as malate dehydrogenase (MDH), voltagedependent, anion-selective channel protein 1(VDAC1), calreticulin (CRT) and brain acid soluble protein 1(BASP1). VDAC1 in A549 cells was reconfirmed by western blot. Transfection with VDAC1 siRNA significantly increased cell viability after the treatment of GA. Further investigation showed that GA down regulated PI3K/Akt signaling pathways. These data strongly suggest that up-regulation of VDAC1 by GA may play an important role in GA-induced, inhibitory effects on A549 cell viability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shao-Yuan Chen ◽  
Koichi Tsuneyama ◽  
Mao-Hsiung Yen ◽  
Jiunn-Tay Lee ◽  
Jiun-Liang Chen ◽  
...  

AbstractTumor cells have long been recognized as a relative contraindication to hyperbaric oxygen treatment (HBOT) since HBOT might enhance progressive cancer growth. However, in an oxygen deficit condition, tumor cells are more progressive and can be metastatic. HBOT increasing in oxygen partial pressure may benefit tumor suppression. In this study, we investigated the effects of HBOT on solid tumors, such as lung cancer. Non-small cell human lung carcinoma A549-cell-transferred severe combined immunodeficiency mice (SCID) mice were selected as an in vivo model to detect the potential mechanism of HBOT in lung tumors. HBOT not only improved tumor hypoxia but also suppressed tumor growth in murine xenograft tumor models. Platelet endothelial cell adhesion molecule (PECAM-1/CD31) was significantly increased after HBOT. Immunostaining of cleaved caspase-3 was demonstrated and apoptotic tumor cells with nuclear debris were aggregated starting on the 14th-day after HBOT. In vitro, HBOT suppressed the growth of A549 cells in a time-dependent manner and immediately downregulated the expression of p53 protein after HBOT in A549 cells. Furthermore, HBOT-reduced p53 protein could be rescued by a proteasome degradation inhibitor, but not an autophagy inhibitor in A549 cells. Our results demonstrated that HBOT improved tissue angiogenesis, tumor hypoxia and increased tumor apoptosis to lung cancer cells in murine xenograft tumor models, through modifying the tumor hypoxic microenvironment. HBOT will merit further cancer therapy as an adjuvant treatment for solid tumors, such as lung cancer.


Sign in / Sign up

Export Citation Format

Share Document