ARCHITECTURE AND DESIGN OF AN 8-BIT FLUX-1 SUPERCONDUCTOR RSFQ MICROPROCESSOR

2002 ◽  
Vol 12 (02) ◽  
pp. 521-529 ◽  
Author(s):  
MIKHAIL DOROJEVETS

The first single-chip superconductor FLUX-1 microprocessor has been designed in the Rapid Single Flux Quantum (RSFQ) logic and fabricated using 4 kA/cm2, 1.75-μm Nb/AlOx/Nb Josephson junction technology as a result of the collaboration between SUNY Stony Brook and TRW, Inc. A FLUX-1 chip represents an 8-bit deeply pipelined microprocessor prototype with a target clock frequency of 17-20 GHz. A new parallel partitioned architecture has been developed in order to tolerate interconnect delays and fill long FLUX-1 processor pipelines with useful instructions. The processor includes the 16 × 32-bit pipelined instruction memory, 8 integer arithmetic-logic units interleaved with 8 registers, the branch unit, and I/O ports for 5-GHz chip-to-chip communication over Nb microstrip lines on a chip carrier. The FLUX-1 instruction set consists of ~25 arithmetic, logical, and control instructions. A FLUX-1 microprocessor chip contains 65,759 Josephson junctions on a 10.6 mm × 13.2 mm die with flip-chip packaging. First FLUX-1 chips fabricated in August 2001 are currently under testing at TRW, Inc.

Author(s):  
Kaustubh Nagarkar ◽  
Tan Zhang ◽  
David Esler ◽  
David Simon ◽  
Paul Gillespie ◽  
...  

Flip chip packaging is one of the fastest growing segments in electronics packaging technology. The semiconductor packaging industry is continuing to migrate towards Pb-free electronics assembly. Therefore, the development of compatible materials for Pb-free flip chip packaging is critical to this transition [1]. Flip chip devices are commonly underfilled to compensate for the mismatch in the Coefficient of Thermal Expansion (CTE) between the die and the chip carrier. The No Flow Underfill (NFU) process is a type that can increase the throughput of the flip chip assembly process and reduce manufacturing costs. Significant research has been performed to develop NFUs for eutectic applications. However, further research is required for the development of NFUs that are compatible with the Pb-free solders and the high temperature reflow process associated with these solders. In this paper, the challenges associated with the development of 'filled' underfill formulations for assembly with the 95.5Sn/3.8Ag/0.7Cu bumped flip chip devices are discussed. The effects of process variables that affect voiding in the underfill layer have been presented. The impact on voiding due to stencil printing of the underfill has been discussed. The impact on assembly reliability due to the underfill material properties has also been reported.


Author(s):  
Ashay Dani ◽  
James C. Matayabas ◽  
Paul Koning

With an increase in the number of transistors (higher power), shrinking processor size (smaller die), and increasing clock speeds (higher frequency) for next generation microprocessors, heat dissipation at the silicon die level has become a critical focus area for microprocessor architecture and design. In addition, power removal at low cost continues to remain the key challenge as we develop the next generation packaging technologies. Novel Thermal Interface Materials (TIM) are required to be designed and developed to meet these new package thermal targets. This paper presents an overview of the novel TIM technologies developed at Intel including greases, phase change materials (PCM), gels, polymer solder hybrids, and solder TIM for multiple generations of desktop, server and mobile microprocessors. The advantages and limitations of these TIM technologies in the thermal management of flip chip packaging are reviewed for Intel’s microprocessors.


Author(s):  
Chong Zou ◽  
Puzhen Gao ◽  
Wei Pan ◽  
Zheng Yang ◽  
Xianbing Chen

We preliminarily designed a power tracking and control system using single-chip computers and industrial control computer in the electric heating simulated power loop. The system is an innovational design based on the proven simulated nuclear power loop, with increased techniques of step-less power regulation system and modeling nuclear feedback effect correctional programs. We promoted both hardware and software designs of this power tracking and control system in this paper. It used single-chip computers as the core control chips and an industrial control computer as the additional correctional program and record carrier. The process and implementation of the control software are presented, which is designed as a fuzzy theoretical nonlinear system. In order to ensure the subsequent updates, the access interface of the system is open for following correctional programs, including the correctional program of void fraction effect, temperature effect, hysteresis effect and heat power distribution effect. Taken hysteresis effect correctional program as an example, we use an offset tic-tac clock replacing the inherent tic-tac clock in different devices of the system in order to reduce the hysteresis effect of measuring and corresponding errors. We also put out a preliminary analysis of the accurate synchronization for the system at the end of the paper.


2014 ◽  
Vol 62 (10) ◽  
pp. 2337-2356 ◽  
Author(s):  
Bon-Hyun Ku ◽  
Ozgur Inac ◽  
Michael Chang ◽  
Hyun-Ho Yang ◽  
Gabriel M. Rebeiz

2011 ◽  
Vol 462-463 ◽  
pp. 1194-1199
Author(s):  
Zainudin Kornain ◽  
Azman Jalar ◽  
Rozaidi Rashid ◽  
Shahrum Abdullah

Underfilling is the vital process to reduce the impact of the thermal stress that results from the mismatch in the co-efficient of thermal expansion (CTE) between the silicon chip and the substrate in Flip Chip Packaging. This paper reported the pattern of underfill’s hardness during curing process for large die Ceramic Flip Chip Ball Grid Array (FC-CBGA). A commercial amine based underfill epoxy was dispensed into HiCTE FC-CBGA and cured in curing oven under a new method of two-step curing profile. Nano-identation test was employed to investigate the hardness of underfill epoxy during curing steps. The result has shown the almost similar hardness of fillet area and centre of the package after cured which presented uniformity of curing states. The total curing time/cycle in production was potentially reduced due to no significant different of hardness after 60 min and 120 min during the period of second hold temperature.


Sign in / Sign up

Export Citation Format

Share Document