Anticancer Activity of Nigella sativa (Black Seed) — A Review

2011 ◽  
Vol 39 (06) ◽  
pp. 1075-1091 ◽  
Author(s):  
Mohammad Akram Randhawa ◽  
Mastour Safar Alghamdi

Nigella sativa (N. sativa) seed has been an important nutritional flavoring agent and natural remedy for many ailments for centuries in ancient systems of medicine, e.g. Unani, Ayurveda, Chinese and Arabic Medicines. Many active components have been isolated from N. sativa, including thymoquinone, thymohydroquinone, dithymoquinone, thymol, carvacrol, nigellimine-N-oxide, nigellicine, nigellidine and alpha-hederin. In addition, quite a few pharmacological effects of N. sativa seed, its oil, various extracts and active components have been identified to include immune stimulation, anti-inflammation, hypoglycemic, antihypertensive, antiasthmatic, antimicrobial, antiparasitic, antioxidant and anticancer effects. Only a few authors have reviewed the medicinal properties of N. sativa and given some description of the anticancer effects. A literature search has revealed that a lot more studies have been recently carried out related to the anticancer activities of N. sativa and some of its active compounds, such as thymoquinone and alpha-hederin. Acute and chronic toxicity studies have recently confirmed the safety of N. sativa oil and its most abundant active component, thymoquinone, particularly when given orally. The present work is aimed at summarizing the extremely valuable work done by various investigators on the effects of N. sativa seed, its extracts and active principles against cancer. Those related to the underlying mechanism of action, derivatives of thymoquinone, nano thymoquinone and combinations of thymoquinone with the currently used cytotoxic drugs are of particular interest. We hope this review will encourage interested researchers to conduct further preclinical and clinical studies to evaluate the anticancer activities of N. sativa, its active constituents and their derivatives.

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1784
Author(s):  
Md. Abdul Hannan ◽  
Md. Ataur Rahman ◽  
Abdullah Al Mamun Sohag ◽  
Md. Jamal Uddin ◽  
Raju Dash ◽  
...  

Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb–drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Agnese Di Napoli ◽  
Pietro Zucchetti

Abstract Background Taraxacum officinale (G.H. Weber ex Wiggers), commonly known as dandelion, is a herbaceous plant native to North America, Europe and Asia. This plant has been used for health purposes since ancient times. The phytochemicals present in different parts of the plant are responsible for its medicinal properties. In this review, we describe the main health properties of Taraxacum officinale. Main body of the abstract We searched for the main medicinal properties of Taraxacum officinale in the scientific literature, using the PubMed database. We selected 54 studies and we described twelve therapeutic properties, which are reported in previous studies. These properties are diuretic, hepatoprotective, anticolitis, immunoprotective, antiviral, antifungal, antibacterial, antiarthritic, antidiabetic, antiobesity, antioxidant and anticancer effects. We also found that the most frequently reported therapeutic effects include hepatoprotective, antioxidant and anticancer activities. Short conclusion In this review, we describe the medicinal properties of Taraxacum officinale reported in previous studies. Antioxidant, hepatoprotective and anticancer effects are mostly found in the scientific literature.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tae Ho Hong ◽  
M. T. Jeena ◽  
Ok-Hee Kim ◽  
Kee-Hwan Kim ◽  
Ho Joong Choi ◽  
...  

AbstractCurrently, there is no appropriate treatment option for patients with sorafenib-resistant hepatocellular carcinoma (HCC). Meanwhile, pronounced anticancer activities of newly-developed mitochondria-accumulating self-assembly peptides (Mito-FF) have been demonstrated. This study intended to determine the anticancer effects of Mito-FF against sorafenib-resistant Huh7 (Huh7-R) cells. Compared to sorafenib, Mito-FF led to the generation of relatively higher amounts of mitochondrial reactive oxygen species (ROS) as well as the greater reduction in the expression of antioxidant enzymes (P < 0.05). Mito-FF was found to significantly promote cell apoptosis while inhibiting cell proliferation of Huh7-R cells. Mito-FF also reduces the expression of antioxidant enzymes while significantly increasing mitochondrial ROS in Huh7-R cells. The pro-apoptotic effect of Mito-FFs for Huh7-R cells is possibly caused by their up-regulation of mitochondrial ROS, which is caused by the destruction of the mitochondria of HCC cells.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Heena Ali ◽  
Ubaid Yaqoob

Abstract Background The genus Arisaema (Areaceae), popularly known as cobra lilies and jack in pulpit is mainly found in temperate to tropical areas of all continents except South America, Europe and Australia and contain about more than 250 species. Arisaema genus is being used by the different folks of human populations for medicinal as well as food purposes. Arisaema plants are used for the treatment of different types of diseases. There have been several attempts to highlight different aspects of genus Arisaema by describing it in terms of phytochemistry and medicinal uses. The present study is, however, an attempt to put together all the former data available related to the phytochemistry and medicinal uses of genus Arisaema. Main body The phytochemicals of the plant include alkaloids, phenols, terpenes, flavonoids, lectins, saponins, glycosides, triterpenoids, stigmasterols, n-alkanes, n-alkanols sitosterols, campesterol, oxalates, coumarins, tannins etc. Moreover, the properties such as antioxidant, antifungal, antibacterial, insecticidal, antimicrobial, cytotoxic, nematocidal, antiallergic antitumour and anticancer activities are also shown by the plants belonging to genus Arisaema. Arisaema plants have been traditionally used to treat various ailments such as resolving phlegm, dampness, and to treat asthma, bronchitis, cold, cough, and laryngitis etc. It has been found that there are several species which are toxic by nature. The development of clinical applications of arisaematis rhizomes had been seriously constrained due to its toxic properties like, mouth and lingua pain, even respiration slowing and suffocation, mucous membrane and skin irritation etc. and this toxicity of arisaematis rhizomes is due to raphide components. Conclusions The collection of data available on the phytochemistry of genus Arisaema is not sufficient as further work is required to do on phytochemical and medicinal basis. The data available on phytochemistry and medicinal properties of the plants belonging to genus Arisaema throws light on various species of Arisaema which are medicinally important and have been exploited to treat different types of diseases in the world.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 73
Author(s):  
Halima Alsamri ◽  
Khawlah Athamneh ◽  
Gianfranco Pintus ◽  
Ali H. Eid ◽  
Rabah Iratni

Rhus coriaria L. (Anacardiaceae), commonly known as sumac, is a commonly used spice, condiment, and flavoring agent, especially in the Mediterranean region. Owing to its bountiful beneficial values, sumac has been used in traditional medicine for the management and treatment of many ailments including hemorrhoids, wound healing, diarrhea, ulcer, and eye inflammation. This plant is rich in various classes of phytochemicals including flavonoids, tannins, polyphenolic compounds, organic acids, and many others. By virtue of its bioactive, Rhus coriaria possesses powerful antioxidant capacities that have ameliorative and therapeutic benefits for many common diseases including cardiovascular disease, diabetes, and cancer. This review describes the phytochemical properties of R. coriaria and then focuses on the potent antioxidant capacities of sumac. We then dissect the cellular and molecular mechanisms of sumac’s action in modulating many pathophysiological instigators. We show how accumulating evidence supports the antibacterial, antinociceptive, antidiabetic, cardioprotective, neuroprotective, and anticancer effects of this plant, especially that toxicity studies show that sumac is very safe to consume by humans and has little toxicity. Taken together, the findings we summarize here support the utilization of this plant as an attractive target for drug discovery.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Ji Hoon Jung ◽  
Tae-Rin Kwon ◽  
Soo-Jin Jeong ◽  
Eun-Ok Kim ◽  
Eun Jung Sohn ◽  
...  

Though tanshinone IIA and cryptotanshinone possess a variety of biological effects such as anti-inflammatory, antioxidative, antimetabolic, and anticancer effects, the precise molecular targets or pathways responsible for anticancer activities of tanshinone IIA and cryptotanshinone in chronic myeloid leukemia (CML) still remain unclear. In the present study, we investigated the effect of tanshinone IIA and cryptotanshinone on the Janus activated kinase (JAK)/signal transducer and activator of transcription (STAT) signaling during apoptotic process. We found that both tanshinone IIA and cryptotanshinone induced apoptosis by activation of caspase-9/3 and Sub-G1 accumulation in K562 cells. However, they have the distinct JAK/STAT pathway, in which tanshinone IIA inhibits JAK2/STAT5 signaling, whereas cryptotanshinone targets the JAK2/STAT3. In addition, tanshinone IIA enhanced the expression of both SHP-1 and -2, while cryptotanshinone regulated the expression of only SHP-1. Both tanshinone IIA and cryptotanshinone attenuated the expression of bcl-xL, survivin, and cyclin D1. Furthermore, tanshinone IIA augmented synergy with imatinib, a CML chemotherapeutic drug, better than cryptotanshinone in K562 cells. Overall, our findings suggest that the anticancer activity of tanshinone IIA and cryptotanshinone is mediated by the distinct the JAK/STAT3/5 and SHP1/2 signaling, and tanshinone IIA has the potential for combination therapy with imatinib in K562 CML cells.


2020 ◽  
Vol 18 (1) ◽  
pp. 890-897 ◽  
Author(s):  
Tin Myo Thant ◽  
Nanik Siti Aminah ◽  
Alfinda Novi Kristanti ◽  
Rico Ramadhan ◽  
Hnin Thanda Aung ◽  
...  

AbstractNew derivatives were obtained from natural nordentatin (1) previously isolated from the methanol fraction of Clausena excavata by an acylation method. Herein, we report ten new pyranocoumarin derivatives 1a–1j. Their structures were elucidated based on UV-vis, FT-IR, NMR, and DART-MS data. The α-glucosidase inhibition and anticancer activities of nordentatin (1) and its derivatives were also evaluated. The α-glucosidase inhibition assay exhibited that the derivatives 1b, 1d, 1e, 1f, 1h, 1i, and 1j possess higher inhibitory activity for α-glucosidase with IC50 values of 1.54, 9.05, 4.87, 20.25, 12.34, 5.67, and 2.43 mM, whereas acarbose was used as the positive control, IC50 = 7.57 mM. All derivatives exhibited a weak cytotoxicity against a cervical cancer (HeLa) cell line with the IC50 between 0.25 and 1.25 mM. They also showed moderate to low growth inhibition of a breast cancer (T47D) cell line with IC50 values between 0.043 and 1.5 mM, but their activity was lower than that of the parent compound, nordentatin (1) (IC50 = 0.041 mM).


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3000 ◽  
Author(s):  
Anna Spivak ◽  
Rezeda Khalitova ◽  
Darya Nedopekina ◽  
Lilya Dzhemileva ◽  
Milyausha Yunusbaeva ◽  
...  

Triterpene acids, namely, 20,29-dihydrobetulinic acid (BA), ursolic acid (UA) and oleanolic acid (OA) were converted into C-28-amino-functionalized triterpenoids 4–7, 8a, 15, 18 and 20. These compounds served as precursors for the synthesis of novel guanidine-functionalized triterpene acid derivatives 9b–12b, 15c, 18c and 20c. The influence of the guanidine group on the antitumor properties of triterpenoids was investigated. The cytotoxicity was tested on five human tumor cell lines (Jurkat, K562, U937, HEK, and Hela), and compared with the tests on normal human fibroblasts. The antitumor activities of the most tested guanidine derivatives was lower, than that of corresponding amines, but triterpenoids with the guanidine group were less toxic towards human fibroblasts. The introduction of the tris(hydroxymethyl)aminomethane moiety into the molecules of triterpene acids markedly enhanced the cytotoxic activity of the resulting conjugates 15, 15c, 18b,c and 20b,c irrespective of the triterpene skeleton type. The dihydrobetulinic acid amine 15, its guanidinium derivative 15c and guanidinium derivatives of ursolic and oleanolic acids 18c and 20c were selected for extended biological investigations in Jurkat cells, which demonstrated that the antitumor activity of these compounds is mediated by induction of cell cycle arrest at the S-phase and apoptosis.


2021 ◽  
Author(s):  
Xiaojian Wang ◽  
Rui Wang ◽  
Ting Xu ◽  
Hongting Jin ◽  
Peijian Tong ◽  
...  

Abstract Background The lesion of marrow is a crucial factor in orthopedic diseases, which is recognized by orthopedics-traumatology expert from "Zhe-School of Chinese Medicine". The Chinese herbs of regulating marrow has been widely used to treat osteonecrosis of the femoral head (ONFH) in China, while the interaction mechanisms were still elucidated. Thus, we conducted this study to explore the underlying mechanism of the five highest-frequency Chinese herbs of regulating marrow(HF-CHRM) in the treatment of ONFH with the aid of network pharmacology(NP) and molecular docking(MD). Methods The active components and potential targets of HF-CHRM were obtained through several online databases, such as Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), UniProt database. The gene targets related to ONFH were collected with the help of the OMIM and GeneCards disease-related databases. The "drug- component-target-disease" network and protein-protein interaction(PPI) network of the drug and disease intersecting targets were constructed by using Cytoscape software and the STRING database. R software was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The MD of critical components and targets was carried out using Autodock Vina and Pymol to validate the binding affinity. Results A total of 54 active components, 1074 drug targets and 195 gene targets were obtained. There were 1219 ONFH related targets. 39 drug and disease intersection targets(representative genes: IL6, TP53, VEGFA, ESR1, IL1B) were obtained and considered potential therapeutic targets. 1619 items were obtained by the GO enrichment analysis, including 1517 biological processes, 10 cellular components and 92 molecular functions, which is mainly related to angiogenesis, bone and lipid metabolism and inflammatory reaction. The KEGG pathway enrichment analysis revealed 119 pathways, including AGE-RAGE signaling pathway, PI3K-Akt signaling pathway and IL-17 signaling pathway. MD results showed that quercetin, wogonin, and kaempferol active components had good affinity with IL6, TP53, and VEGFA core proteins. Conclusion The HF-CHRM can treat ONFH by multi-component, multi-target, and multi-pathway comprehensive action.


Sign in / Sign up

Export Citation Format

Share Document