Accumulation and diffusion of charges in kinetics of polymer electric breakdown

Author(s):  
I. K. Aliyeva ◽  
T. M. Veliyev

In this paper, the distribution in electric durability [Formula: see text] of polymers in constant electric field at low temperatures has been measured. The results of continuous experiments and experiments of field discontinuous effect on polymer samples being remained not disruptive after exposure for time equal to mean value [Formula: see text] have been compared. During the interval, we have varied the time interval, temperature [Formula: see text] and electric intensity of opposite sign [Formula: see text] according to which various degree of regeneration of polymer electric strength properties has been observed. By the degree of regeneration, relaxation time [Formula: see text] of the accumulated charges in polymers causing breakdown has been found. It is established that the process of charge diffusion, which accumulation leads to breakdown has a thermofluctuation behavior and the activation energy of given process depends on the counter field intensity magnitude.

2016 ◽  
Vol 697 ◽  
pp. 572-575
Author(s):  
Xue Qing Yang ◽  
Nai Peng ◽  
Cheng Ji Deng

The kinetics of in-situ β- Sialon bonded Al2O3-C (SAC) refractories were investigated by TGA techniques via isothermal nitridation experiments at different temperatures. The result show that the nitridation process of in-situ β-Sialon bonded Al2O3-C refractories can be divided into two stages: the nitridation reaction rate controlling stage in the first 10 min, and the apparent activation energy of nitridation reaction is 370 kJ/mol ; then the reaction is controlled by both chemical reaction and diffusion rate in the following 110 min, the apparent activation energy of nitridation reaction is 410 kJ/mol.


1950 ◽  
Vol 28b (2) ◽  
pp. 60-72 ◽  
Author(s):  
L. M. Pidgeon ◽  
W. A. Alexander

The rates of oxidation of titanium powder and sintered bar have been investigated in the temperature range 25° to 550 °C. at pressures of 2 and 20 cm. oxygen maintained constant throughout each experiment. It has been shown that the oxidation process can be divided into two mechanisms, viz., the formation of a thin surface film and diffusion of oxide into the metal. The surface film formation at low temperatures follows the logarithmic equation:[Formula: see text]on vacuum annealed metal surface. The diffusion process at higher temperatures is described by the equation:[Formula: see text]after the initial oxidation. This equation leads to preliminary values of the diffusion constant of the order of 10 × 10−8 cm2. per min. in the temperature range 463° to 565 °C.


1992 ◽  
Vol 258 ◽  
Author(s):  
A.A. Pasa ◽  
M.B. Schubert ◽  
C.-D. Abel ◽  
W. Beyer ◽  
W. Losch ◽  
...  

ABSTRACTThe Au-induced crystallization of a-Si:H has been studied by evaporating Au films of different thicknesses onto intrinsic glow discharge deposited a-Si:H layers. The presence of a sharp peak in the Raman spectra (FWHM≈9 cm-1, ω516 cm-1) of samples with a Au thickness larger than 2 nm, which have been annealed in vacuum at 400K≤T≤600K, indicate that the crystallites have approximately the same size (6nm) regardless of the annealing conditions. An investigation of crystallization versus Au-film thickness revealed, that the total crystallized volume is increasing with Au thickness, and furthermore a saturation of the crystallized volume takes place, most probably due to an exhaustion of the Au reservoir. The increase of crystallization rate with temperature follows an Arrhenius-like dependence with an activation energy of 1.1 eV. Changes in hydrogen content as a consequence of the crystallization have been monitored by H-effusion measurements: Au-coated a-Si:H samples show a strong H2 evolution at temperatures substantially lower than uncoated ones.


1966 ◽  
Vol 44 (24) ◽  
pp. 2927-2940 ◽  
Author(s):  
M. C. Lin ◽  
K. J. Laidler

The azomethane-sensitized pyrolysis of ethane was studied at low temperatures from 280 to 350 °C. Measurements were made of initial rates of formation of methane, nitrogen, and butane. From the rate of nitrogen production the rate constant for the azomethane decomposition into 2CH3 + N2 was[Formula: see text]A similar study of the propane decomposition, at temperatures from 260 to 300 °C, led to the value[Formula: see text]in satisfactory agreement. The rate of decomposition of the n-propyl radical into CH3 and C2H4 was obtained by comparing the rates of formation of C2H4 and n-C6H14; the rate constant was[Formula: see text]The activation energy of 31.4 kcal/mole, together with that of 8.9 kcal/mole for the reverse reaction obtained by Brinton, leads to a value of 20.3 kcal/mole for the dissociation energy of n-CH3—CH CH2 at 0 °K, and to a value of 22.8 at 25 °C. The corresponding values for the heats of formation 2of the n-propyl radical are 28.4 kcal/mole at 0 °K, and 23.1 kcal/mole at 25 °C. The dissociation energy of n-CH3CH2CH2—H is deduced to be 99.4 kcal/mole at 0 °K and 99.9 kcal/mole at 25 °C. An energy diagram is constructed for the various reactions of n-C3H7 and i-C3H7.


1982 ◽  
Vol 47 (7) ◽  
pp. 1780-1786 ◽  
Author(s):  
Rostislav Kudláček ◽  
Jan Lokoč

The effect of gamma pre-irradiation of the mixed nickel-magnesium oxide catalyst on the kinetics of hydrogenation of maleic acid in the liquid phase has been studied. The changes of the hydrogenation rate are compared with the changes of the adsorbed amount of the acid and with the changes of the solution composition, activation energy, and absorbed dose of the ionizing radiation. From this comparison and from the interpretation of the experimental data it can be deduced that two types of centers can be distinguished on the surface of the catalyst under study, namely the sorption centres for the acid and hydrogen and the reaction centres.


Cancers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 2421
Author(s):  
Roberta Fusco ◽  
Vincenza Granata ◽  
Mauro Mattace Raso ◽  
Paolo Vallone ◽  
Alessandro Pasquale De Rosa ◽  
...  

Purpose. To combine blood oxygenation level dependent magnetic resonance imaging (BOLD-MRI), dynamic contrast enhanced MRI (DCE-MRI), and diffusion weighted MRI (DW-MRI) in differentiation of benign and malignant breast lesions. Methods. Thirty-seven breast lesions (11 benign and 21 malignant lesions) pathologically proven were included in this retrospective preliminary study. Pharmaco-kinetic parameters including Ktrans, kep, ve, and vp were extracted by DCE-MRI; BOLD parameters were estimated by basal signal S0 and the relaxation rate R2*; and diffusion and perfusion parameters were derived by DW-MRI (pseudo-diffusion coefficient (Dp), perfusion fraction (fp), and tissue diffusivity (Dt)). The correlation coefficient, Wilcoxon-Mann-Whitney U-test, and receiver operating characteristic (ROC) analysis were calculated and area under the ROC curve (AUC) was obtained. Moreover, pattern recognition approaches (linear discrimination analysis and decision tree) with balancing technique and leave one out cross validation approach were considered. Results. R2* and D had a significant negative correlation (−0.57). The mean value, standard deviation, Skewness and Kurtosis values of R2* did not show a statistical significance between benign and malignant lesions (p > 0.05) confirmed by the ‘poor’ diagnostic value of ROC analysis. For DW-MRI derived parameters, the univariate analysis, standard deviation of D, Skewness and Kurtosis values of D* had a significant result to discriminate benign and malignant lesions and the best result at the univariate analysis in the discrimination of benign and malignant lesions was obtained by the Skewness of D* with an AUC of 82.9% (p-value = 0.02). Significant results for the mean value of Ktrans, mean value, standard deviation value and Skewness of kep, mean value, Skewness and Kurtosis of ve were obtained and the best AUC among DCE-MRI extracted parameters was reached by the mean value of kep and was equal to 80.0%. The best diagnostic performance in the discrimination of benign and malignant lesions was obtained at the multivariate analysis considering the DCE-MRI parameters alone with an AUC = 0.91 when the balancing technique was considered. Conclusions. Our results suggest that the combined use of DCE-MRI, DW-MRI and/or BOLD-MRI does not provide a dramatic improvement compared to the use of DCE-MRI features alone, in the classification of breast lesions. However, an interesting result was the negative correlation between R2* and D.


2021 ◽  
pp. 009524432110203
Author(s):  
Sudhir Bafna

It is often necessary to assess the effect of aging at room temperature over years/decades for hardware containing elastomeric components such as oring seals or shock isolators. In order to determine this effect, accelerated oven aging at elevated temperatures is pursued. When doing so, it is vital that the degradation mechanism still be representative of that prevalent at room temperature. This places an upper limit on the elevated oven temperature, which in turn, increases the dwell time in the oven. As a result, the oven dwell time can run into months, if not years, something that is not realistically feasible due to resource/schedule constraints in industry. Measuring activation energy (Ea) of elastomer aging by test methods such as tensile strength or elongation, compression set, modulus, oxygen consumption, etc. is expensive and time consuming. Use of kinetics of weight loss by ThermoGravimetric Analysis (TGA) using the Ozawa/Flynn/Wall method per ASTM E1641 is an attractive option (especially due to the availability of commercial instrumentation with software to make the required measurements and calculations) and is widely used. There is no fundamental scientific reason why the kinetics of weight loss at elevated temperatures should correlate to the kinetics of loss of mechanical properties over years/decades at room temperature. Ea obtained by high temperature weight loss is almost always significantly higher than that obtained by measurements of mechanical properties or oxygen consumption over extended periods at much lower temperatures. In this paper, data on five different elastomer types (butyl, nitrile, EPDM, polychloroprene and fluorocarbon) are presented to prove that point. Thus, use of Ea determined by weight loss by TGA tends to give unrealistically high values, which in turn, will lead to incorrectly high predictions of storage life at room temperature.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1176
Author(s):  
Fuqiang Zheng ◽  
Yufeng Guo ◽  
Feng Chen ◽  
Shuai Wang ◽  
Jinlai Zhang ◽  
...  

The effects of F− concentration, leaching temperature, and time on the Ti leaching from Ti-bearing electric furnace slag (TEFS) by [NH4+]-[F−] solution leaching process was investigated to reveal the leaching mechanism and kinetics of titanium. The results indicated that the Ti leaching rate obviously increased with the increase of leaching temperature and F− concentration. The kinetic equation of Ti leaching was obtained, and the activation energy was 52.30 kJ/mol. The fitting results of kinetic equations and calculated values of activation energy both indicated that the leaching rate of TEFS was controlled by surface chemical reaction. The semi-empirical kinetics equation was consistent with the real experimental results, with a correlation coefficient (R2) of 0.996. The Ti leaching rate reached 92.83% after leaching at 90 °C for 20 min with F− concentration of 14 mol/L and [NH4+]/[F−] ratio of 0.4. The leaching rates of Si, Fe, V, Mn, and Cr were 94.03%, 7.24%, 5.36%, 4.54%, and 1.73%, respectively. The Ca, Mg, and Al elements were converted to (NH4)3AlF6 and CaMg2Al2F12 in the residue, which can transform into stable oxides and fluorides after pyro-hydrolyzing and calcinating.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Klaiani B. Fontana ◽  
Giane Gonçalves Lenzi ◽  
Erica R. L. R. Watanabe ◽  
Ervin Kaminski Lenzi ◽  
Juliana A. M. T. Pietrobelli ◽  
...  

The removal of Pb(II) from water by biosorption processes onto malt bagasse was investigated and the kinetic and thermodynamic parameters were obtained; additionally a diffusion modeling was proposed. The characterization of malt bagasse was performed by FTIR and SEM/EDS. The experiments were conducted in batch system and an experimental design based response surface methodology was applied for agitation speed and pH optimization. The kinetics of biosorption followed pseudo-second-order model and the temperature of the process affected the biosorption capacity. Isotherm models of Langmuir, Freundlich, and Elovich were applied and the Langmuir model showed better fit and the estimated biosorption capacity was 29.1 mg g−1. The negative values obtained for ΔG° and positive values of ΔH° confirm, respectively, the spontaneous and endothermic nature of the process. The diffusion modeling was performed based on experiments in the absence of agitation to investigate the influence of the biosorbent on the sorption process of Pb(II) ions.


Ceramics ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 331-363
Author(s):  
Eugeniy Lantcev ◽  
Aleksey Nokhrin ◽  
Nataliya Malekhonova ◽  
Maksim Boldin ◽  
Vladimir Chuvil'deev ◽  
...  

This study investigates the impact of carbon on the kinetics of the spark plasma sintering (SPS) of nano- and submicron powders WC-10wt.%Co. Carbon, in the form of graphite, was introduced into powders by mixing. The activation energy of solid-phase sintering was determined for the conditions of isothermal and continuous heating. It has been demonstrated that increasing the carbon content leads to a decrease in the fraction of η-phase particles and a shift of the shrinkage curve towards lower heating temperatures. It has been established that increasing the graphite content in nano- and submicron powders has no significant effect on the SPS activation energy for “mid-range” heating temperatures, QS(I). The value of QS(I) is close to the activation energy of grain-boundary diffusion in cobalt. It has been demonstrated that increasing the content of graphite leads to a significant decrease in the SPS activation energy, QS(II), for “higher-range” heating temperatures due to lower concentration of tungsten atoms in cobalt-based γ-phase. It has been established that the sintering kinetics of fine-grained WC-Co hard alloys is limited by the intensity of diffusion creep of cobalt (Coble creep).


Sign in / Sign up

Export Citation Format

Share Document