Generative Adversarial Networks

2021 ◽  
Vol 54 (6) ◽  
pp. 1-38
Author(s):  
Zhipeng Cai ◽  
Zuobin Xiong ◽  
Honghui Xu ◽  
Peng Wang ◽  
Wei Li ◽  
...  

Generative Adversarial Networks (GANs) have promoted a variety of applications in computer vision and natural language processing, among others, due to its generative model’s compelling ability to generate realistic examples plausibly drawn from an existing distribution of samples. GAN not only provides impressive performance on data generation-based tasks but also stimulates fertilization for privacy and security oriented research because of its game theoretic optimization strategy. Unfortunately, there are no comprehensive surveys on GAN in privacy and security, which motivates this survey to summarize systematically. The existing works are classified into proper categories based on privacy and security functions, and this survey conducts a comprehensive analysis of their advantages and drawbacks. Considering that GAN in privacy and security is still at a very initial stage and has imposed unique challenges that are yet to be well addressed, this article also sheds light on some potential privacy and security applications with GAN and elaborates on some future research directions.

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1705
Author(s):  
Aziz Alotaibi

Many image processing, computer graphics, and computer vision problems can be treated as image-to-image translation tasks. Such translation entails learning to map one visual representation of a given input to another representation. Image-to-image translation with generative adversarial networks (GANs) has been intensively studied and applied to various tasks, such as multimodal image-to-image translation, super-resolution translation, object transfiguration-related translation, etc. However, image-to-image translation techniques suffer from some problems, such as mode collapse, instability, and a lack of diversity. This article provides a comprehensive overview of image-to-image translation based on GAN algorithms and its variants. It also discusses and analyzes current state-of-the-art image-to-image translation techniques that are based on multimodal and multidomain representations. Finally, open issues and future research directions utilizing reinforcement learning and three-dimensional (3D) modal translation are summarized and discussed.


2021 ◽  
Vol 54 (2) ◽  
pp. 1-38
Author(s):  
Zhengwei Wang ◽  
Qi She ◽  
Tomás E. Ward

Generative adversarial networks (GANs) have been extensively studied in the past few years. Arguably their most significant impact has been in the area of computer vision where great advances have been made in challenges such as plausible image generation, image-to-image translation, facial attribute manipulation, and similar domains. Despite the significant successes achieved to date, applying GANs to real-world problems still poses significant challenges, three of which we focus on here. These are as follows: (1) the generation of high quality images, (2) diversity of image generation, and (3) stabilizing training. Focusing on the degree to which popular GAN technologies have made progress against these challenges, we provide a detailed review of the state-of-the-art in GAN-related research in the published scientific literature. We further structure this review through a convenient taxonomy we have adopted based on variations in GAN architectures and loss functions. While several reviews for GANs have been presented to date, none have considered the status of this field based on their progress toward addressing practical challenges relevant to computer vision. Accordingly, we review and critically discuss the most popular architecture-variant, and loss-variant GANs, for tackling these challenges. Our objective is to provide an overview as well as a critical analysis of the status of GAN research in terms of relevant progress toward critical computer vision application requirements. As we do this we also discuss the most compelling applications in computer vision in which GANs have demonstrated considerable success along with some suggestions for future research directions. Codes related to the GAN-variants studied in this work is summarized on https://github.com/sheqi/GAN_Review.


2020 ◽  
pp. 1-13
Author(s):  
Yundong Li ◽  
Yi Liu ◽  
Han Dong ◽  
Wei Hu ◽  
Chen Lin

The intrusion detection of railway clearance is crucial for avoiding railway accidents caused by the invasion of abnormal objects, such as pedestrians, falling rocks, and animals. However, detecting intrusions using deep learning methods from infrared images captured at night remains a challenging task because of the lack of sufficient training samples. To address this issue, a transfer strategy that migrates daytime RGB images to the nighttime style of infrared images is proposed in this study. The proposed method consists of two stages. In the first stage, a data generation model is trained on the basis of generative adversarial networks using RGB images and a small number of infrared images, and then, synthetic samples are generated using a well-trained model. In the second stage, a single shot multibox detector (SSD) model is trained using synthetic data and utilized to detect abnormal objects from infrared images at nighttime. To validate the effectiveness of the proposed method, two groups of experiments, namely, railway and non-railway scenes, are conducted. Experimental results demonstrate the effectiveness of the proposed method, and an improvement of 17.8% is achieved for object detection at nighttime.


2020 ◽  
pp. 0032258X2096858
Author(s):  
Alexander E Carter ◽  
Mariea Hoy ◽  
Betsy Byrne DeSimone

Despite law enforcement’s best efforts to use social media as a means of community policing, some engagement tactics may lead citizens to disclose personally identifiable information (PII). We coded 200 tweets with the popular #9PMRoutine that tagged @PascoSheriff (Florida) for participant PII. We found numerous postings of adults’ and children’s PII that are problematic including pictures, health information and security-related comments about their routines or vacations. Implications for law enforcement to protect their communities are discussed as well as opportunities to continue to cultivate their online relationships in a more secure forum. We also provide future research directions.


2021 ◽  
Author(s):  
Peng Liu

In the past decades, remote sensing (RS) data fusion has always been an active research community. A large number of algorithms and models have been developed. Generative Adversarial Networks (GAN), as an important branch of deep learning, show promising performances in variety of RS image fusions. This review provides an introduction to GAN for remote sensing data fusion. We briefly review the frequently-used architecture and characteristics of GAN in data fusion and comprehensively discuss how to use GAN to realize fusion for homogeneous RS data, heterogeneous RS data, and RS and ground observation data. We also analyzed some typical applications with GAN-based RS image fusion. This review takes insight into how to make GAN adapt to different types of fusion tasks and summarizes the advantages and disadvantages of GAN-based RS data fusion. Finally, we discuss the promising future research directions and make a prediction on its trends.


2012 ◽  
pp. 13-22 ◽  
Author(s):  
João Gama ◽  
André C.P.L.F. de Carvalho

Machine learning techniques have been successfully applied to several real world problems in areas as diverse as image analysis, Semantic Web, bioinformatics, text processing, natural language processing,telecommunications, finance, medical diagnosis, and so forth. A particular application where machine learning plays a key role is data mining, where machine learning techniques have been extensively used for the extraction of association, clustering, prediction, diagnosis, and regression models. This text presents our personal view of the main aspects, major tasks, frequently used algorithms, current research, and future directions of machine learning research. For such, it is organized as follows: Background information concerning machine learning is presented in the second section. The third section discusses different definitions for Machine Learning. Common tasks faced by Machine Learning Systems are described in the fourth section. Popular Machine Learning algorithms and the importance of the loss function are commented on in the fifth section. The sixth and seventh sections present the current trends and future research directions, respectively.


Author(s):  
João Gama ◽  
André C.P.L.F. de Carvalho

Machine learning techniques have been successfully applied to several real world problems in areas as diverse as image analysis, Semantic Web, bioinformatics, text processing, natural language processing,telecommunications, finance, medical diagnosis, and so forth. A particular application where machine learning plays a key role is data mining, where machine learning techniques have been extensively used for the extraction of association, clustering, prediction, diagnosis, and regression models. This text presents our personal view of the main aspects, major tasks, frequently used algorithms, current research, and future directions of machine learning research. For such, it is organized as follows: Background information concerning machine learning is presented in the second section. The third section discusses different definitions for Machine Learning. Common tasks faced by Machine Learning Systems are described in the fourth section. Popular Machine Learning algorithms and the importance of the loss function are commented on in the fifth section. The sixth and seventh sections present the current trends and future research directions, respectively.


2020 ◽  
pp. 1-18
Author(s):  
Henri Schildt

The introductory chapter to the book The Data Imperative examines how technological advances together with a new managerial mindset are driving digital transformation. While early business information systems were often self-contained and designed to solve specific problems, contemporary systems are highly interconnected and integrated. Corporations can use data flows to coordinate diverse processes and activities across organizational and geographic boundaries. The chapter explains how digital transformation involves a systematic shift from predominant reliance on human knowledge and skills to digital data flows and smart algorithms. Artificial intelligence techniques, such as generative adversarial networks and advanced natural language processing, and 5G wireless technologies create new opportunities to replace human routines with algorithmic processing. Data will continue to break down organizational silos, enable deeper collaboration across company boundaries, and speed up the development of new services.


Author(s):  
Yuejun He ◽  
Bradley Camburn ◽  
Jianxi Luo ◽  
Maria C. Yang ◽  
Kristin L. Wood

AbstractTextual idea data from online crowdsourcing contains rich information of the concepts that underlie the original ideas and can be recombined to generate new ideas. But representing such information in a way that can stimulate new ideas is not a trivial task, because crowdsourced data are often vast and in unstructured natural languages. This paper introduces a method that uses natural language processing to summarize a massive number of idea descriptions and represents the underlying concept space as word clouds with a core-periphery structure to inspire recombinations of such concepts into new ideas. We report the use of this method in a real public-sector-sponsored project to explore ideas for future transportation system design. Word clouds that represent the concept space underlying original crowdsourced ideas are used as ideation aids and stimulate many new ideas with varied novelty, usefulness and feasibility. The new ideas suggest that the proposed method helps expand the idea space. Our analysis of these ideas and a survey with the designers who generated them shed light on how people perceive and use the word clouds as ideation aids and suggest future research directions.


Author(s):  
Md Nazmus Saadat ◽  
Muhammad Shuaib

The aim of this chapter is to introduce newcomers to deep learning, deep learning platforms, algorithms, applications, and open-source datasets. This chapter will give you a broad overview of the term deep learning, in context to deep learning machine learning, and Artificial Intelligence (AI) is also introduced. In Introduction, there is a brief overview of the research achievements of deep learning. After Introduction, a brief history of deep learning has been also discussed. The history started from a famous scientist called Allen Turing (1951) to 2020. In the start of a chapter after Introduction, there are some commonly used terminologies, which are used in deep learning. The main focus is on the most recent applications, the most commonly used algorithms, modern platforms, and relevant open-source databases or datasets available online. While discussing the most recent applications and platforms of deep learning, their scope in future is also discussed. Future research directions are discussed in applications and platforms. The natural language processing and auto-pilot vehicles were considered the state-of-the-art application, and these applications still need a good portion of further research. Any reader from undergraduate and postgraduate students, data scientist, and researchers would be benefitted from this.


Sign in / Sign up

Export Citation Format

Share Document