Immunosensation: Neuroimmune Cross Talk in the Skin

2021 ◽  
Vol 39 (1) ◽  
Author(s):  
Masato Tamari ◽  
Aaron M. Ver Heul ◽  
Brian S. Kim

Classically, skin was considered a mere structural barrier protecting organisms from a diversity of environmental insults. In recent decades, the cutaneous immune system has become recognized as a complex immunologic barrier involved in both antimicrobial immunity and homeostatic processes like wound healing. To sense a variety of chemical, mechanical, and thermal stimuli, the skin harbors one of the most sophisticated sensory networks in the body. However, recent studies suggest that the cutaneous nervous system is highly integrated with the immune system to encode specific sensations into evolutionarily conserved protective behaviors. In addition to directly sensing pathogens, neurons employ novel neuroimmune mechanisms to provide host immunity. Therefore, given that sensation underlies various physiologies through increasingly complex reflex arcs, a much more dynamic picture is emerging of the skin as a truly systemic organ with highly coordinated physical, immunologic, and neural functions in barrier immunology. Expected final online publication date for the Annual Review of Immunology, Volume 39 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Joshua M. Kirsch ◽  
Robert S. Brzozowski ◽  
Dominick Faith ◽  
June L. Round ◽  
Patrick R. Secor ◽  
...  

Bacteria and their viruses (bacteriophages or phages) interact antagonistically and beneficially in polymicrobial communities such as the guts of animals. These interactions are multifaceted and are influenced by environmental conditions. In this review, we discuss phage-bacteria interactions as they relate to the complex environment of the gut. Within the mammalian and invertebrate guts, phages and bacteria engage in diverse interactions including genetic coexistence through lysogeny, and phages directly modulate microbiota composition and the immune system with consequences that are becoming recognized as potential drivers of health and disease. With greater depth of understanding of phage-bacteria interactions in the gut and the outcomes, future phage therapies become possible. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Karen Robinson ◽  
John C. Atherton

Helicobacter pylori is the leading cause of peptic ulcer disease. The infection has been implicated in more than 75% of duodenal ulcer cases and 17% of gastric ulcer cases. H. pylori has been classified as a human carcinogen, since it is the main cause of distal gastric adenocarcinoma and B cell mucosa-associated lymphoid tissue lymphoma. Evidence also links H. pylori with extragastric conditions including iron deficiency anemia, idiopathic thrombocytopenic purpura, and vitamin B12 deficiency. Studies indicate that H. pylori may be protective against other conditions of the gastrointestinal tract (e.g., reflux esophagitis and related pathologies) and elsewhere in the body (e.g., asthma). The infection is asymptomatic in the vast majority of cases; more serious outcomes occur in only 10–15% of infected individuals. Despite extensive research over the past 3 decades, there is no effective vaccine, and the circumstances leading to disease development remain unclear. In addition, there is now a growing prevalence of antimicrobial resistance in H. pylori. This review discusses these important issues. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 16 is January 25, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Jeffrey W. Brown ◽  
Charles J. Cho ◽  
Jason C. Mills

Complex multicellular organisms have evolved specific mechanisms to replenish cells in homeostasis and during repair. Here, we discuss how emerging technologies (e.g., single-cell RNA sequencing) challenge the concept that tissue renewal is fueled by unidirectional differentiation from a resident stem cell. We now understand that cell plasticity, i.e., cells adaptively changing differentiation state or identity, is a central tissue renewal mechanism. For example, mature cells can access an evolutionarily conserved program (paligenosis) to reenter the cell cycle and regenerate damaged tissue. Most tissues lack dedicated stem cells and rely on plasticity to regenerate lost cells. Plasticity benefits multicellular organisms, yet it also carries risks. For one, when long-lived cells undergo paligenotic, cyclical proliferation and redifferentiation, they can accumulate and propagate acquired mutations that activate oncogenes and increase the potential for developing cancer. Lastly, we propose a new framework for classifying patterns of cell proliferation in homeostasis and regeneration, with stem cells representing just one of the diverse methods that adult tissues employ. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 75 (1) ◽  
Author(s):  
Graham J. Britton ◽  
Jeremiah J. Faith

Despite identification of numerous associations between microbiomes and diseases, the complexity of the human microbiome has hindered identification of individual species and strains that are causative in host phenotype or disease. Uncovering causative microbes is vital to fully understand disease processes and to harness the potential therapeutic benefits of microbiota manipulation. Developments in sequencing technology, animal models, and bacterial culturing have facilitated the discovery of specific microbes that impact the host and are beginning to advance the characterization of host-microbiome interaction mechanisms. We summarize the historical and contemporary experimental approaches taken to uncover microbes from the microbiota that affect host biology and describe examples of commensals that have specific effects on the immune system, inflammation, and metabolism. There is still much to learn, and we lay out challenges faced by the field and suggest potential remedies for common pitfalls encountered in the hunt for causative commensal microbes. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Lei Li ◽  
Kun-hsiang Liu ◽  
Jen Sheen

Nutrients are vital to life through intertwined sensing, signaling, and metabolic processes. Emerging research focuses on how distinct nutrient signaling networks integrate and coordinate gene expression, metabolism, growth, and survival. We review the multifaceted roles of sugars, nitrate, and phosphate as essential plant nutrients in controlling complex molecular and cellular mechanisms of dynamic signaling networks. Key advances in central sugar and energy signaling mechanisms mediated by the evolutionarily conserved master regulators HEXOKINASE1 (HXK1), TARGET OF RAPAMYCIN (TOR), and SNF1-RELATED PROTEIN KINASE1 (SNRK1) are discussed. Significant progress in primary nitrate sensing, calcium signaling, transcriptome analysis, and root–shoot communication to shape plant biomass and architecture are elaborated. Discoveries on intracellular and extracellular phosphate signaling and the intimate connections with nitrate and sugar signaling are examined. This review highlights the dynamic nutrient, energy, growth, and stress signaling networks that orchestrate systemwide transcriptional, translational, and metabolic reprogramming, modulate growth and developmental programs, and respond to environmental cues. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Medeea Popescu ◽  
Jonas D. Van Belleghem ◽  
Arya Khosravi ◽  
Paul L. Bollyky

Bacteriophages—viruses that infect bacteria—are abundant within our bodies, but their significance to human health is only beginning to be explored. Here, we synthesize what is currently known about our phageome and its interactions with the immune system. We first review how phages indirectly affect immunity via bacterial expression of phage-encoded proteins. We next review how phages directly influence innate immunity and bacterial clearance. Finally, we discuss adaptive immunity against phages and its implications for phage/bacterial interactions. In light of these data, we propose that our microbiome can be understood as an interconnected network of bacteria, bacteriophages, and human cells and that the stability of these tri-kingdom interactions may be important for maintaining our immunologic and metabolic health. Conversely, the disruption of this balance, through exposure to exogenous phages, microbial dysbiosis, or immune dysregulation, may contribute to disease. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Jeramiah J. Smith ◽  
Vladimir A. Timoshevskiy ◽  
Cody Saraceno

Over the last few decades, an increasing number of vertebrate taxa have been identified that undergo programmed genome rearrangement, or programmed DNA loss, during development. In these organisms, the genome of germ cells is often reproducibly different from the genome of all other cells within the body. Although we clearly have not identified all vertebrate taxa that undergo programmed genome loss, the list of species known to undergo loss now represents ∼10% of vertebrate species, including several basally diverging lineages. Recent studies have shed new light on the targets and mechanisms of DNA loss and their association with canonical modes of DNA silencing. Ultimately, expansion of these studies into a larger collection of taxa will aid in reconstructing patterns of shared/independent ancestry of programmed DNA loss in the vertebrate lineage, as well as more recent evolutionary events that have shaped the structure and content of eliminated DNA. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 9 is February 16, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 41 (1) ◽  
Author(s):  
William S. Blaner ◽  
Igor O. Shmarakov ◽  
Maret G. Traber

Vitamin A, acting through its metabolite, all- trans-retinoic acid, is a potent transcriptional regulator affecting expression levels of hundreds of genes through retinoic acid response elements present within these genes. However, the literature is replete with claims that consider vitamin A to be an antioxidant vitamin, like vitamins C and E. This apparent contradiction in the understanding of how vitamin A acts mechanistically within the body is a major focus of this review. Vitamin E, which is generally understood to act as a lipophilic antioxidant protecting polyunsaturated fatty acids present in membranes, is often proposed to be a transcriptional regulator. The evaluation of this claim is another focus of the review. We conclude that vitamin A is an indirect antioxidant, whose indirect function is to transcriptionally regulate a number of genes involved in mediating the body's canonical antioxidant responses. Vitamin E, in addition to being a direct antioxidant, enables the increase of peroxidized lipids that alter both metabolic pathways and gene expression profiles within tissues and cells. However, there is little compelling evidence that vitamin E has a direct transcriptional mechanism like that of vitamin A. Thus, we propose that the term antioxidant not be applied to vitamin A, and we discourage the use of the term transcriptional mediator when discussing vitamin E. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Scott M. Emrich ◽  
Ryan E. Yoast ◽  
Mohamed Trebak

Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ signaling pathway that is evolutionarily conserved across eukaryotes. SOCE is triggered physiologically when the endoplasmic reticulum (ER) Ca2+ stores are emptied through activation of inositol-1,4,5-trisphosphate receptors. SOCE is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which are highly Ca2+ selective. Upon store depletion, the ER Ca2+-sensing STIM proteins aggregate and gain extended conformations spanning the ER-plasma membrane junctional space to bind and activate Orai, the pore-forming proteins of hexameric CRAC channels. In recent years, studies on STIM and Orai tissue-specific knockout mice and gain- and loss-of-function mutations in humans have shed light on the physiological functions of SOCE in various tissues. Here, we describe recent findings on the composition of native CRAC channels and their physiological functions in immune, muscle, secretory, and neuronal systems to draw lessons from transgenic mice and human diseases caused by altered CRAC channel activity. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2022 ◽  
Vol 43 (1) ◽  
Author(s):  
Amanda M. Wilson ◽  
Darrah K. Sleeth ◽  
Camie Schaefer ◽  
Rachael M. Jones

Health care workers (HCWs) can acquire infectious diseases, including coronavirus disease 2019 (COVID-19), from patients. Herein, COVID-19 is used with the source–pathway–receptor framework as an example to assess evidence for the role of aerosol transmission and indirect contact transmission of viral respiratory infectious diseases. Evidence for both routes is strong for COVID-19 and other respiratory viruses, but aerosol transmission is likely dominant for COVID-19. Key knowledge gaps about transmission processes and control strategies include the distribution of viable virus among respiratory aerosols of different sizes, the mechanisms and efficiency by which virus deposited on the facial mucous membrane moves to infection sites inside the body, and the performance of source controls such as face coverings and aerosol containment devices. To ensure that HCWs are adequately protected from infection, guidelines and regulations must be updated to reflect the evidence that respiratory viruses are transmitted via aerosols. Expected final online publication date for the Annual Review of Public Health, Volume 43 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document