AMPKα is essential for acute exercise-induced gene responses but not for exercise training-induced adaptations in mouse skeletal muscle

2015 ◽  
Vol 309 (11) ◽  
pp. E900-E914 ◽  
Author(s):  
Joachim Fentz ◽  
Rasmus Kjøbsted ◽  
Caroline Maag Kristensen ◽  
Janne Rasmus Hingst ◽  
Jesper Bratz Birk ◽  
...  

Exercise training increases skeletal muscle expression of metabolic proteins improving the oxidative capacity. Adaptations in skeletal muscle by pharmacologically induced activation of 5′-AMP-activated protein kinase (AMPK) are dependent on the AMPKα2 subunit. We hypothesized that exercise training-induced increases in exercise capacity and expression of metabolic proteins, as well as acute exercise-induced gene regulation, would be compromised in muscle-specific AMPKα1 and -α2 double-knockout (mdKO) mice. An acute bout of exercise increased skeletal muscle mRNA content of cytochrome c oxidase subunit I, glucose transporter 4, and VEGF in an AMPK-dependent manner, whereas cluster of differentiation 36 and fatty acid transport protein 1 mRNA content increased similarly in AMPKα wild-type (WT) and mdKO mice. During 4 wk of voluntary running wheel exercise training, the AMPKα mdKO mice ran less than WT. Maximal running speed was lower in AMPKα mdKO than in WT mice but increased similarly in both genotypes with exercise training. Exercise training increased quadriceps protein content of ubiquinol-cytochrome c reductase core protein 1 (UQCRC1), cytochrome c, hexokinase II, plasma membrane fatty acid-binding protein, and citrate synthase activity more in AMPKα WT than in mdKO muscle. However, analysis of a subgroup of mice matched for running distance revealed that only UQCRC1 protein content increased more in WT than in mdKO mice with exercise training. Thus, AMPKα1 and -α2 subunits are important for acute exercise-induced mRNA responses of some genes and may be involved in regulating basal metabolic protein expression but seem to be less important in exercise training-induced adaptations in metabolic proteins.

2009 ◽  
Vol 297 (1) ◽  
pp. E92-E103 ◽  
Author(s):  
Lotte Leick ◽  
Ylva Hellsten ◽  
Joachim Fentz ◽  
Stine S. Lyngby ◽  
Jørgen F. P. Wojtaszewski ◽  
...  

The aim of the present study was to test the hypothesis that PGC-1α is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1α-dependent mechanism. Whole body PGC-1α knockout (KO) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1α KO mice, VEGF protein expression was ∼60–80% lower and the capillary-to-fiber ratio ∼20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1α KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased skeletal muscle VEGF protein expression ∼50% in WT mice but with no effect in PGC-1α KO mice. Furthermore, a training-induced prevention of an age-associated decline in VEGF protein content was observed in WT but not in PGC-1α KO muscles. In addition, repeated AICAR treatments increased skeletal muscle VEGF protein expression ∼15% in WT but not in PGC-1α KO mice. This study shows that PGC-1α is essential for exercise-induced upregulation of skeletal muscle VEGF expression and for a training-induced prevention of an age-associated decline in VEGF protein content. Furthermore, the findings suggest an AMPK-mediated regulation of VEGF expression through PGC-1α.


2019 ◽  
Vol 104 (10) ◽  
pp. 4804-4814 ◽  
Author(s):  
Morten Hjuler Nielsen ◽  
Rugivan Sabaratnam ◽  
Andreas James Thestrup Pedersen ◽  
Kurt Højlund ◽  
Aase Handberg

Abstract Context Microvesicles (MVs) are a class of membrane particles shed by any cell in the body in physiological and pathological conditions. They are considered to be key players in intercellular communication, and with a molecular content reflecting the composition of the cell of origin, they have recently emerged as a promising source of biomarkers in a number of diseases. Objective The effects of acute exercise on the plasma concentration of skeletal muscle-derived MVs (SkMVs) carrying metabolically important membrane proteins were examined. Participants Thirteen men with obesity and type 2 diabetes mellitus (T2DM) and 14 healthy male controls with obesity exercised on a cycle ergometer for 60 minutes. Interventions Muscle biopsies and blood samples—obtained before exercise, immediately after exercise, and 3 hours into recovery—were collected for the analysis of long-chain fatty acid (LCFA) transport proteins CD36 (a scavenger receptor class B protein) and fatty acid transport protein 4 (FATP4) mRNA content in muscle and for flow cytometric studies on circulating SkMVs carrying either LCFA transport protein. Results Besides establishing a flow cytometric approach for the detection of circulating SkMVs and subpopulations carrying either CD36 or FATP4 and thereby adding proof to their existence, we demonstrated an overall exercise-induced change of SkMVs carrying these LCFA transport proteins. A positive correlation between exercise-induced changes in skeletal muscle CD36 mRNA expression and concentrations of SkMVs carrying CD36 was found in T2DM only. Conclusions This approach could add important real-time information about the abundance of LCFA transport proteins present on activated muscle cells in subjects with impaired glucose metabolism.


2007 ◽  
Vol 293 (3) ◽  
pp. R1335-R1341 ◽  
Author(s):  
Krista R. Howarth ◽  
Kirsten A. Burgomaster ◽  
Stuart M. Phillips ◽  
Martin J. Gibala

The branched-chain oxoacid dehydrogenase complex (BCOAD) is rate determining for the oxidation of branched-chain amino acids (BCAAs) in skeletal muscle. Exercise training blunts the acute exercise-induced activation of BCOAD (BCOADa) in human skeletal muscle (McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. Am J Physiol Endocrinol Metab 278: E580–E587, 2000); however, the mechanism is unknown. We hypothesized that training would increase the muscle protein content of BCOAD kinase, the enzyme responsible for inactivation of BCOAD by phosphorylation. Twenty subjects [23 ± 1 yr; peak oxygen uptake (V̇o2peak) = 41 ± 2 ml·kg−1·min−1] performed 6 wk of either high-intensity interval or continuous moderate-intensity training on a cycle ergometer ( n = 10/group). Before and after training, subjects performed 60 min of cycling at 65% of pretraining V̇o2peak, and needle biopsy samples (vastus lateralis) were obtained before and immediately after exercise. The effect of training was demonstrated by an increased V̇o2peak, increased citrate synthase maximal activity, and reduced muscle glycogenolysis during exercise, with no difference between groups (main effects, P < 0.05). BCOADa was lower after training (main effect, P < 0.05), and this was associated with a ∼30% increase in BCOAD kinase protein content (main effect, P < 0.05). We conclude that the increased protein content of BCOAD kinase may be involved in the mechanism for reduced BCOADa after exercise training in human skeletal muscle. These data also highlight differences in models used to study the regulation of skeletal muscle BCAA metabolism, since exercise training was previously reported to increase BCOADa during exercise and decrease BCOAD kinase content in rats (Fujii H, Shimomura Y, Murakami T, Nakai N, Sato T, Suzuki M, Harris RA. Biochem Mol Biol Int 44: 1211–1216, 1998).


Author(s):  
Nanna Skytt Pilmark ◽  
Laura Oberholzer ◽  
Jens Frey Halling ◽  
Jonas M. Kristensen ◽  
Christina Pedersen Bønding ◽  
...  

Metformin and exercise both improve glycemic control, but in vitro studies have indicated that an interaction between metformin and exercise occurs in skeletal muscle, suggesting a blunting effect of metformin on exercise training adaptations. Two studies (a double-blind, parallel-group, randomized clinical trial conducted in 29 glucose-intolerant individuals and a double-blind, cross-over trial conducted in 15 healthy lean males) were included in this paper. In both studies, the effect of acute exercise +/- metformin treatment on different skeletal muscle variables, previously suggested to be involved in a pharmaco-physiological interaction between metformin and exercise, was assessed. Furthermore, in the parallel-group trial, the effect of 12 weeks of exercise training was assessed. Skeletal muscle biopsies were obtained before and after acute exercise and 12 weeks of exercise training, and mitochondrial respiration, oxidative stress and AMPK activation was determined. Metformin did not significantly affect the effects of acute exercise or exercise training on mitochondrial respiration, oxidative stress or AMPK activation, indicating that the response to acute exercise and exercise training adaptations in skeletal muscle is not affected by metformin treatment. Further studies are needed to investigate whether an interaction between metformin and exercise is present in other tissues, e.g. the gut. Trial registration: ClinicalTrials.gov (NCT03316690 and NCT02951260). Novelty bullets • Metformin does not affect exercise-induced alterations in mitochondrial respiratory capacity in human skeletal muscle • Metformin does not affect exercise-induced alterations in systemic levels of oxidative stress nor emission of reactive oxygen species from human skeletal muscle • Metformin does not affect exercise-induced AMPK activation in human skeletal muscle


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ping Wang ◽  
Chun Guang Li ◽  
Zhengtang Qi ◽  
Di Cui ◽  
Shuzhe Ding

Exercise induced skeletal muscle phenotype change involves a complex interplay between signaling pathways and downstream regulators. This study aims to investigate the effect of acute exercise on mitochondrial H2O2production and its association withp66Shc, FOXO3a, and antioxidant enzymes. Male ICR/CD-1 mice were subjected to an acute exercise. Muscle tissues (gastrocnemius and quadriceps femoris) were taken after exercise to measure mitochondrial H2O2content, expression ofp66Shcand FOXO3a, and the activity of antioxidant enzymes. The results showed that acute exercise significantly increased mitochondrial H2O2content and expressions ofp66Shcand FOXO3a in a time-dependent manner, with a linear correlation between the increase in H2O2content andp66Shcor FOXO3a expression. The activity of mitochondrial catalase was slightly reduced in the 90 min exercise group, but it was significantly higher in groups with 120 and 150 min exercise compared to that of 90 min exercise group. The activity of SOD was not significantly affected. The results indicate that acute exercise increases mitochondrial H2O2production in the skeletal muscle, which is associated with the upregulation ofp66Shcand FOXO3a. The association ofp66Shcand FOXO3a signaling with exercise induced H2O2generation may play a role in regulating cellular oxidative stress during acute exercise.


2004 ◽  
Vol 287 (2) ◽  
pp. R397-R402 ◽  
Author(s):  
Lotte Jensen ◽  
Henriette Pilegaard ◽  
P. Darrell Neufer ◽  
Ylva Hellsten

The present study investigated the effect of an acute exercise bout on the mRNA response of vascular endothelial growth factor (VEGF) splice variants in untrained and trained human skeletal muscle. Seven habitually active young men performed one-legged knee-extensor exercise training at an intensity corresponding to ∼70% of the maximal workload in an incremental test five times/week for 4 wk. Biopsies were obtained from the vastus lateralis muscle of the trained and untrained leg 40 h after the last training session. The subjects then performed 3 h of two-legged knee-extensor exercise, and biopsies were obtained from both legs after 0, 2, 6, and 24 h of recovery. Real-time PCR was used to examine the expression of VEGF mRNA containing exon 1 and 2 (all VEGF isoforms), exon 6 or exon 7, and VEGF165mRNA. Acute exercise induced an increase ( P < 0.05) in total VEGF mRNA levels as well as VEGF165and VEGF splice variants containing exon 7 at 0, 2, and 6 h of recovery. The increase in VEGF mRNA was higher in the untrained than in the trained leg ( P < 0.05). The results suggest that in human skeletal muscle, acute exercise increases total VEGF mRNA, an increase that appears to be explained mainly by an increase in VEGF165mRNA. Furthermore, 4 wk of training attenuated the exercise-induced response in skeletal muscle VEGF165mRNA.


2010 ◽  
Vol 108 (6) ◽  
pp. 1719-1726 ◽  
Author(s):  
G. D. Wadley ◽  
G. K. McConell

High doses of the antioxidant vitamin C prevent the increases in skeletal muscle mitochondrial biogenesis after exercise training. Since exercise training effects rely on the acute stimulus of each exercise bout, we examined whether vitamin C supplementation also attenuates the increases in skeletal muscle metabolic signaling and mitochondrial biogenesis in response to an acute exercise bout. Male Sprague-Dawley rats performed 60 min of treadmill running (27 m/min, 5% grade) or remained sedentary. For 7 days before this, one-half of the rats received water containing 500 mg/kg body wt vitamin C. Acute exercise significantly ( P < 0.05) increased the phosphorylation of p38 MAPK, AMP-activated kinase-α, and activating transcription factor (ATF)-2 and the ratio of oxidized to total glutathione (GSSG/TGSH) in the gastrocnemius. However, vitamin C had no effect on these increases. Similarly, vitamin C did not prevent the exercise-induced increases in peroxisome proliferator-activated receptor-γ coactivator-1α, nuclear respiratory factor (NRF)-1, NRF-2, mitochondrial transcription factor A, glutathione peroxidase-1, MnSOD, extracellular SOD, or glucose transporter 4 ( P < 0.05) mRNA after exercise. Surprisingly, vitamin C supplementation significantly increased the basal levels of GSSG/TGSH, NRF-1, and NRF-2 mRNA and basal ATF-2 phosphorylation. In summary, despite other studies in rats showing that vitamin C supplementation prevents increases in skeletal muscle mitochondrial biogenesis and antioxidant enzymes with exercise training, vitamin C had no affect on the acute exercise-induced increases of these markers.


2013 ◽  
Vol 304 (12) ◽  
pp. E1379-E1390 ◽  
Author(s):  
Brynjulf Mortensen ◽  
Janne R. Hingst ◽  
Nicklas Frederiksen ◽  
Rikke W. W. Hansen ◽  
Caroline S. Christiansen ◽  
...  

Subjects with a low birth weight (LBW) display increased risk of developing type 2 diabetes (T2D). We hypothesized that this is associated with defects in muscle adaptations following acute and regular physical activity, evident by impairments in the exercise-induced activation of AMPK signaling. We investigated 21 LBW and 21 normal birth weight (NBW) subjects during 1 h of acute exercise performed at the same relative workload before and after 12 wk of exercise training. Multiple skeletal muscle biopsies were obtained before and after exercise. Protein levels and phosphorylation status were determined by Western blotting. AMPK activities were measured using activity assays. Protein levels of AMPKα1 and -γ1 were significantly increased, whereas AMPKγ3 levels decreased with training independently of group. The LBW group had higher exercise-induced AMPK Thr172 phosphorylation before training and higher exercise-induced ACC2 Ser221 phosphorylation both before and after training compared with NBW. Despite exercise being performed at the same relative intensity (65% of V̇o2peak), the acute exercise response on AMPK Thr172, ACC2 Ser221, AMPKα2β2γ1, and AMPKα2β2γ3 activities, GS activity, and adenine nucleotides as well as hexokinase II mRNA levels were all reduced after exercise training. Increased exercise-induced muscle AMPK activation and ACC2 Ser221 phosphorylation in LBW subjects may indicate a more sensitive AMPK system in this population. Long-term exercise training may reduce the need for AMPK to control energy turnover during exercise. Thus, the remaining γ3-associated AMPK activation by acute exercise after exercise training might be sufficient to maintain cellular energy balance.


2017 ◽  
Vol 312 (3) ◽  
pp. R426-R433 ◽  
Author(s):  
J. Matthew Hinkley ◽  
Adam R. Konopka ◽  
Miranda K. Suer ◽  
Matthew P. Harber

The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg−1·min−1) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70–100% V̇o2max) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved ( P < 0.05) cycling performance by 5 ± 1%. Protein oxidation was unaltered on day 12, while resting SAPK/JNK phosphorylation was reduced ( P < 0.05), suggesting a reduction in cellular stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended ( P < 0.10) to increase resting protein content of manganese superoxide dismutase and heat shock protein 70 (HSP70), while mRNA expression of MuRF-1 was elevated ( P < 0.05). Following training ( day 12), the acute exercise-induced transcriptional response of TNF-α, NF-κB, MuRF-1, and PGC1α was attenuated ( P < 0.05) compared with day 1. Collectively, these data suggest that short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation.


2021 ◽  
Author(s):  
S. C. Broome ◽  
T. Pham ◽  
A. J. Braakhuis ◽  
R. Narang ◽  
H. W. Wang ◽  
...  

ABSTRACTThe role of mitochondrial ROS production and signalling in muscle adaptations to exercise training has not been explored in detail. Here we investigated the effect of supplementation with the mitochondria-targeted antioxidant MitoQ on a) the skeletal muscle mitochondrial and antioxidant gene transcriptional response to acute high-intensity exercise and b) skeletal muscle mitochondrial content and function following exercise training. In a randomised, double-blind, placebo-controlled, parallel design study, 23 untrained men (age: 44 ± 7 years, VO2peak: 39.6 ± 7.9 ml/kg/min) were randomised to receive either MitoQ (20 mg/d) or a placebo for 10 days before completing a bout of high-intensity interval exercise (cycle ergometer, 10 × 60 s at VO2peak workload with 75 s rest). Blood samples and vastus lateralis muscle biopsies were collected before exercise and immediately and 3 hours after exercise. Participants then completed high-intensity interval training (HIIT; 3 sessions per week for 3 weeks) and another blood sample and muscle biopsy were collected. MitoQ supplementation augmented acute exercise-induced increases in skeletal muscle mRNA expression of the major regulator of proteins involved in mitochondrial biogenesis peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α). Despite this, training-induced increases in skeletal muscle mitochondrial content were unaffected by MitoQ supplementation. HIIT-induced increases in VO2peak and 20 km time trial performance were also unaffected by MitoQ while MitoQ augmented training-induced increases in peak power achieved during the VO2peak test. These data suggest that MitoQ supplementation enhances the effect of training on peak power, which may be related to the augmentation of skeletal muscle PGC1α expression following acute exercise. However, this effect does not appear to be related to an effect of MitoQ supplementation on HIIT-induced mitochondrial biogenesis in skeletal muscle and may therefore be the result of other adaptations mediated by PGC1α.


Sign in / Sign up

Export Citation Format

Share Document