scholarly journals Evidence for fatty acids mediating CL 316,243-induced reductions in blood glucose in mice

2014 ◽  
Vol 307 (7) ◽  
pp. E563-E570 ◽  
Author(s):  
Rebecca E. K. MacPherson ◽  
Laura Castellani ◽  
Marie-Soleil Beaudoin ◽  
David C. Wright

CL 316,243, a β3-adrenergic agonist, was developed as an antiobesity and diabetes drug and causes rapid decreases in blood glucose levels in mice. The mechanisms mediating this effect have not been fully elucidated; thus, the purpose of the current study was to examine the role of fatty acids and interleukin-6, reputed mediators of insulin secretion, in this process. To address this question, we used physiological and pharmacological approaches in combination with knockout mouse models. CL 316,243 treatment in male C57BL6 mice increased plasma fatty acids, glycerol, interleukin-6, and insulin and reduced blood glucose concentrations 2 h following injections. The ability of CL 316,243 to increase insulin and fatty acids and reduce glucose was preserved in interleukin-6-deficient mice. CL 316,243-induced drops in blood glucose occurred in parallel with increases in circulating fatty acids but prior to increases in plasma interleukin-6. CL 316,243-mediated increases in plasma insulin levels and reductions in blood glucose were attenuated when mice were pretreated with the lipase inhibitor nicotinic acid or in whole body adipose tissue triglyceride lipase knockout mice. Collectively, our findings demonstrate an important role for fatty acids in mediating the effects of CL 316,243 in mice. Not only do our results provide new insight into the mechanisms of action of CL 316,243, but they also hint at an unappreciated aspect of adipose tissue -pancreas cross-talk.

2014 ◽  
Vol 221 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Nava Chapnik ◽  
Yoni Genzer ◽  
Avraham Ben-Shimon ◽  
Masha Y Niv ◽  
Oren Froy

AMP-activated protein kinase (AMPK) is a regulator of energy balance at both the cellular and the whole-body levels. Direct activation of AMPK has been highlighted as a potential novel, and possibly safer, alternative to treat type II diabetes and obesity. In this study, we aimed to design and characterize novel peptides that mimic the αG region of the α2 AMPK catalytic domain to modulate its activity by inhibiting interactions between AMPK domains or other interacting proteins. The derived peptides were tested in vivo and in tissue culture. The computationally predicted structure of the free peptide with the addition of the myristoyl (Myr) or acetyl (Ac) moiety closely resembled the protein structure that it was designed to mimic. Myr-peptide and Ac-peptide activated AMPK in muscle cells and led to reduced adipose tissue weight, body weight, blood glucose levels, insulin levels, and insulin resistance index, as expected from AMPK activation. In addition, triglyceride, cholesterol, leptin, and adiponectin levels were also lower, suggesting increased adipose tissue breakdown, a result of AMPK activation. On the other hand, liver weight and liver lipid content increased due to fat retention. We could not find an elevated pAMPK:AMPK ratio in the liver in vivo or in hepatocytes ex vivo, suggesting that the peptide does not lead to AMPK activation in hepatocytes. The finding that an AMPK-derived peptide leads to the activation of AMPK in muscle cells and in adipose tissue and leads to reduced glucose levels in obese mice, but to fat accumulation in the liver, demonstrates the differential effect of AMPK modulation in various tissues.


2016 ◽  
Vol 311 (2) ◽  
pp. C269-C276 ◽  
Author(s):  
Rebecca E. K. MacPherson ◽  
Steven M. Dragos ◽  
Sofhia Ramos ◽  
Charles Sutton ◽  
Scott Frendo-Cumbo ◽  
...  

5′-AMP-activated protein kinase (AMPK) is activated as a consequence of lipolysis and has been shown to play a role in regulation of adipose tissue mitochondrial content. Conversely, the inhibition of lipolysis has been reported to potentiate the induction of protein kinase A (PKA)-targeted genes involved in the regulation of oxidative metabolism. The purpose of the current study was to address these apparent discrepancies and to more fully examine the relationship between lipolysis, AMPK, and the β-adrenergic-mediated regulation of gene expression. In 3T3-L1 adipocytes, the adipose tissue triglyceride lipase (ATGL) inhibitor ATGListatin attenuated the Thr172 phosphorylation of AMPK by a β3-adrenergic agonist (CL 316,243) independent of changes in PKA signaling. Similarly, CL 316,243-induced increases in the Thr172 phosphorylation of AMPK were reduced in adipose tissue from whole body ATGL-deficient mice. Despite reductions in the activation of AMPK, the induction of PKA-targeted genes was intact or, in some cases, increased. Similarly, markers of mitochondrial content and respiration were increased in adipose tissue from ATGL knockout mice independent of changes in the Thr172 phosphorylation of AMPK. Taken together, our data provide evidence that AMPK is not required for the regulation of adipose tissue oxidative capacity in conditions of reduced fatty acid release.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1189
Author(s):  
J. Jason Collier ◽  
Heidi M. Batdorf ◽  
Kaelan L. Merrifield ◽  
Thomas M. Martin ◽  
Ursula White ◽  
...  

Obesity, insulin resistance, and type 2 diabetes contribute to increased morbidity and mortality in humans. The db/db mouse is an important mouse model that displays many key features of the human disease. Herein, we used the drug pioglitazone, a thiazolidinedione with insulin-sensitizing properties, to investigate blood glucose levels, indicators of islet β-cell health and maturity, and gene expression in adipose tissue. Oral administration of pioglitazone lowered blood glucose levels in db/db mice with a corresponding increase in respiratory quotient, which indicates improved whole-body carbohydrate utilization. In addition, white adipose tissue from db/db mice and from humans treated with pioglitazone showed increased expression of glycerol kinase. Both db/db mice and humans given pioglitazone displayed increased expression of UCP-1, a marker typically associated with brown adipose tissue. Moreover, pancreatic β-cells from db/db mice treated with pioglitazone had greater expression of insulin and Nkx6.1 as well as reduced abundance of the de-differentiation marker Aldh1a3. Collectively, these findings indicate that four weeks of pioglitazone therapy improved overall metabolic health in db/db mice. Our data are consistent with published reports of human subjects administered pioglitazone and with analysis of human adipose tissue taken from subjects treated with pioglitazone. In conclusion, the current study provides evidence that pioglitazone restores key markers of metabolic health and also showcases the utility of the db/db mouse to understand mechanisms associated with human metabolic disease and interventions that provide therapeutic benefit.


2016 ◽  
Vol 62 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Y.A. Pankov

Studies on experimental animals with knockout of the insulin receptor gene Insr (in the whole body or in certain tissues) and/or related genes encoding proteins involved in realization of insulin signal transduction in target cells, have made an important contribution to the elucidation of insulin regulation of metabolism, particularly fat metabolism. Since the whole insulin secreted by b-cells, together with the products of gastrointestinal tract digestion of proteins, fats, and carbohydrates reach the liver, the latter is the first organ on which this hormone acts. The liver employs released amino acids for synthesis of proteins, including apoproteins for various lipoproteins. Glucose is used for synthesis of glycogen, fatty acids, and triglycerides, which enter all the organs in very low density lipoproteins (VLDL). The LIRKO mice with knockout of the Insr gene in the liver demonstrated inhibition of synthesis of macromolecular compounds from amino acids, glucose, and fatty acids. Low molecular weight substances demonstrated increased entry to circulation, and together with other disorders induced hyperglycemia. In LIRKO mice blood glucose levels and glucose tolerance demonstrated time-dependent normalization and at later stages the increase in glucose levels was replaced by hypoglycemia. These changes can be well explained if we take into consideration that one of the main functions of insulin consists in stimulation of energy accumulation by means of activation of triglyceride deposition in adipose tissue. FIRKO mice with selective knockout of adipose tissue Insr were characterized by decreased uptake of glucose in adipocytes, and its transformation into lipids. However, the level of body fat in animals remained normal, possibly due to preserved insulin receptor in the liver and insulin-induced activation of triglyceride production which maintained normal levels of body fat stores, the effective functioning of adipose tissue and secretion of leptin by adipocytes during inhibition of glucose transformation into triglyceride in adipose tissue. Knockout of the Insr gene in muscles blocked glucose uptake by myocytes, but it did not induce hyperglycemia, probably due to the increase in glucose uptake by other organs, which retained the insulin receptor, and induced some increase in fat resources in adipose tissue. Similar results were obtained in mice with knockout the glucose transporter 4 GLUT4 in muscle and/or adipose tissue. Insulin microinjections in the brain, in the cerebral ventricle 4 (ICV) and mediobasal hypothalamus (MBH) did not affect the insulin levels in the general circulation, but effectively activated lipogenesis and inhibited lipolysis in adipose tissue. They induced obesity, similar to conventional obesity when the insulin levels increased. These results may serve as additional evidence for importance of the adipogenic insulin function in mechanisms of regulation of general metabolism.


1997 ◽  
Vol 82 (12) ◽  
pp. 4167-4170 ◽  
Author(s):  
Constantine Tsigos ◽  
Dimitris A. Papanicolaou ◽  
Ioannis Kyrou ◽  
Ruby Defensor ◽  
Constantine S. Mitsiadis ◽  
...  

Inflammatory cytokines have metabolic actions that probably contribute to the general adaptation of the organism during infectious or inflammatory stress. To examine the effects of interleukin 6 (IL-6), the main circulating cytokine, on glucose metabolism in man, we performed dose-response studies of recombinant human IL-6 in normal volunteers. Increasing single doses of IL-6 (0.1, 0.3, 1.0, 3.0, and 10.0 mg/Kg BW) were injected sc in 15 healthy male volunteers (3 in each dose) after a 12-h fast. All IL-6 doses were tolerated well and produced no significant adverse effects. We measured the circulating levels of glucose, insulin, C-peptide, and glucagon at baseline and half-hourly over 4 h after the IL-6 injection. Mean peak plasma levels of IL-6 were achieved between 120 and 240 min and were 8, 22, 65, 290, and 4050 pg/mL, respectively, for the 5 doses. After administration of the 2 smaller IL-6 doses, we observed no significant changes in plasma glucose levels, which, because of continued fasting, decreased slightly over time. By 60 min after the 3 higher IL-6 doses, however, the decline in fasting blood glucose was arrested, and glucose levels increased in a dose-dependent fashion. The concurrent levels of plasma insulin and C-peptide were not affected by any IL-6 dose. In contrast, IL-6 caused significant increases in plasma glucagon levels, which peaked between 120 and 150 min after the IL-6 injection. In conclusion, sc IL-6 administration induced dose-dependent increases in fasting blood glucose, probably by stimulating glucagon release and other counteregulatory hormones and/or by inducing peripheral resistance to insulin action.


1989 ◽  
Vol 256 (1) ◽  
pp. R161-R168 ◽  
Author(s):  
A. J. Scheurink ◽  
A. B. Steffens ◽  
H. Bouritius ◽  
G. H. Dreteler ◽  
R. Bruntink ◽  
...  

The effects of sympathoadrenal manipulations on the exercise-induced alterations in blood glucose, plasma free fatty acids (FFA), and insulin were investigated in intact and adrenodemedullated rats. Exercise consisted of strenuous swimming against a countercurrent for 15 min. Before, during, and after swimming, blood samples were taken through a permanent heart catheter. Adrenodemedullation (Adm) markedly reduced the exercise-induced increase in both glucose and FFA. This effect was counteracted by intravenous infusion of epinephrine (E, 20 ng/min). Intravenous infusion of 50 ng E/min into Adm rats caused an exaggerated increase in glucose. In two additional experiments 1) specific adrenoceptor agonists and antagonists were administered to exercising intact and Adm rats, and 2) E or norepinephrine (NE; 20 ng/min) was infused into intact resting rats. The results suggest that E from the adrenal medulla directly affects glucose and insulin but not FFA concentrations in the blood. NE released from peripheral sympathetic nerve endings probably acts in two different ways: as neurotransmitter on liver and pancreas and as a hormone on adipose tissue.


1991 ◽  
Vol 261 (3) ◽  
pp. E304-E311 ◽  
Author(s):  
M. Walker ◽  
G. R. Fulcher ◽  
C. F. Sum ◽  
H. Orskov ◽  
K. G. Alberti

The purpose of this study was to examine the effect of physiological plasma nonesterified fatty acid (NEFA) levels on insulin-stimulated forearm and whole body glucose uptake and substrate oxidation during euglycemia and hyperglycemia. Seven healthy men received Intralipid and heparin for 210 min in two studies, with saline as control in two further studies. Insulin (0.05 U.kg-1.h-1) was infused from 60 min, and euglycemia was maintained during lipid (EL) and control (EC) studies, and hyperglycemia was maintained in the other studies (HL and HC). Forearm NEFA uptake was comparable in the lipid studies (+61 +/- 10 and +52 +/- 8 nmol.100 ml forearm-1.min-1, EL and HL) and was suppressed in the controls. With Intralipid, forearm glucose uptake decreased during euglycemia but not during hyperglycemia (+3.85 +/- 0.34 vs. +3.34 +/- 0.25 mumol.100 ml forearm-1.min-1, EC vs. EL, P less than 0.02), with comparable changes in whole body glucose uptake. Glucose oxidation and forearm alanine release decreased with Intralipid at both blood glucose levels, with no significant change in the rates of nonoxidative glucose disposal. These observations support the operation of the glucose-fatty acid cycle at physiological plasma NEFA levels at both blood glucose concentrations, but this was associated with a decrease in peripheral insulin sensitivity only during euglycemia.


2003 ◽  
Vol 89 (3) ◽  
pp. 375-382 ◽  
Author(s):  
Caroline M. Pond ◽  
Christine A. Mattacks

To explore the hypothesis that proliferating lymphoid cells in immune-stimulated lymph nodes obtain nutrients locally from adjacent adipose tissue, adult guinea pigs were fed for 6 weeks on standard chow or on chow supplemented with 100 g suet, sunflower oil or fish oi/g. All the guinea pigs ate standard chow for the last 5 d, during which swelling of one popliteal lymph node was stimulated by repeated local injection of lipopolysaccharide. The fatty acid compositions of phospholipids in both popliteal and in several mesenteric lymph nodes, and of triacylglycerols in eleven samples of adipose tissue defined by their anatomical relations to lymph nodes, were determined by GC. The proportions of fatty acids in the phospholipids extracted from the stimulated popliteal node correlated best with those of triacylglycerols in the surrounding adipocytes, less strongly with those of adipocytes elsewhere in depots associated with lymphoid tissue, but not with those of nodeless depots. The composition of triacylglycerols in the perinodal adipose tissue changed under local immune stimulation. We conclude that proliferating lymphoid cells in activated lymph nodes obtain fatty acids mainly from the triacylglycerols in adjacent perinodal adipose tissue. Immune stimulation prompts changes in the fatty acid composition of the triacylglycerols of adipocytes in node-containing depots that equip the adipose tissue for provisioning immune responses. Such local interactions show that specialised adipocytes can act as an interface between whole-body and cellular nutrition, and may explain why mammalian adipose tissue is partitioned into a few large and many small depots.


1988 ◽  
Vol 60 (3) ◽  
pp. 499-507 ◽  
Author(s):  
Susan Southon ◽  
Z. Kechrid ◽  
A. J. A. Wright ◽  
Susan J. Fairweather-Tait

1. Male, 4–5-week-old, genetically diabetic mice (C57BL/KsJ db/db) and non-diabetic heterozygote litter-mates (C57BL/KsJ db/+)were fed on a diet containing 1 mg zinc/kg (low-Zn groups) or 54 mg Zn/kg (control groups) for 27 d. Food intakes and body-weight gain were recorded regularly. On day 28, after an overnight fast, animals were killed and blood glucose and insulin concentrations, liver glycogen, and femur and pancreatic Zn concentrations were determined.2. The consumption of the low-Zn diet had only a minimal effect on the Zn status of the mice as indicated by growth rate, food intake and femur and pancreatic Zn concentrations. In fact, diabetic mice fed on the low-Zn diet had a higher total food intake than those fed on the control diet. The low-Zn diabetic mice had higher fasting blood glucose and liver glycogen levels than their control counterparts. Fasting blood insulin concentration was unaffected by dietary regimen.3. A second experiment was performed in which the rate of loss of 65Zn, injected subcutaneously, was measured by whole-body counting in the two mouse genotypes over a 28 d period, from 4 to 5 weeks of age. The influence of feeding low-Zn or control diets was also examined. At the end of the study femur and pancreatic Zn and non-fasting blood glucose levels were determined.4. All mice fed on the low-Zn diet showed a marked reduction in whole-body 65Zn loss compared with those animals fed on the control diet. In the low-Zn groups, the loss of 65Zn from the diabetic mice was significantly greater than that from heterozygote mice. This difference was not observed in the control groups. Blood glucose levels were elevated in the low-Zn groups. Possible reasons for these observations are discussed.5. The present study demonstrates an adverse effect of reduced dietary Zn intake on glucose utilization in the genetically diabetic mouse, which occurred before any significant tissue Zn depletion became apparent.


2012 ◽  
Vol 97 (11) ◽  
pp. 4193-4200 ◽  
Author(s):  
A. J. Fahey ◽  
N. Paramalingam ◽  
R. J. Davey ◽  
E. A. Davis ◽  
T. W. Jones ◽  
...  

Context: Recently we showed that a 10-sec maximal sprint effort performed before or after moderate intensity exercise can prevent early hypoglycemia during recovery in individuals with type 1 diabetes mellitus (T1DM). However, the mechanisms underlying this protective effect of sprinting are still unknown. Objective: The objective of the study was to test the hypothesis that short duration sprinting increases blood glucose levels via a disproportionate increase in glucose rate of appearance (Ra) relative to glucose rate of disappearance (Rd). Subjects and Experimental Design: Eight T1DM participants were subjected to a euglycemic-euinsulinemic clamp and, together with nondiabetic participants, were infused with [6,6-2H]glucose before sprinting for 10 sec and allowed to recover for 2 h. Results: In response to sprinting, blood glucose levels increased by 1.2 ± 0.2 mmol/liter (P < 0.05) within 30 min of recovery in T1DM participants and remained stable afterward, whereas glycemia rose by only 0.40 ± 0.05 mmol/liter in the nondiabetic group. During recovery, glucose Ra did not change in both groups (P > 0.05), but glucose Rd in the nondiabetic and diabetic participants fell rapidly after exercise before returning within 30 min to preexercise levels. After sprinting, the levels of plasma epinephrine, norepinephrine, and GH rose transiently in both experimental groups (P < 0.05). Conclusion: A sprint as short as 10 sec can increase plasma glucose levels in nondiabetic and T1DM individuals, with this rise resulting from a transient decline in glucose Rd rather than from a disproportionate rise in glucose Ra relative to glucose Rd as reported with intense aerobic exercise.


Sign in / Sign up

Export Citation Format

Share Document