Resveratrol modulates the angiogenic response to exercise training in skeletal muscles of aged men

2014 ◽  
Vol 307 (8) ◽  
pp. H1111-H1119 ◽  
Author(s):  
Lasse Gliemann ◽  
Jesper Olesen ◽  
Rasmus Sjørup Biensø ◽  
Jakob Friis Schmidt ◽  
Thorbjorn Akerstrom ◽  
...  

In animal studies, the polyphenol resveratrol has been shown to influence several pathways of importance for angiogenesis in skeletal muscle. The aim of the present study was to examine the angiogenic effect of resveratrol supplementation with parallel exercise training in aged men. Forty-three healthy physically inactive aged men (65 ± 1 yr) were divided into 1) a training group that conducted 8 wk of intense exercise training where half of the subjects received a daily intake of either 250 mg trans-resveratrol ( n = 14) and the other half received placebo ( n = 13) and 2) a nontraining group that received either 250 mg trans-resveratrol ( n = 9) or placebo ( n = 7). The group that trained with placebo showed a ∼20% increase in the capillary-to-fiber ratio, an increase in muscle protein expression of VEGF, VEGF receptor-2, and tissue inhibitor of matrix metalloproteinase (TIMP-1) but unaltered thrombospodin-1 levels. Muscle interstitial VEGF and thrombospodin-1 protein levels were unchanged after the training period. The group that trained with resveratrol supplementation did not show an increase in the capillary-to-fiber ratio or an increase in muscle VEGF protein. Muscle TIMP-1 protein levels were lower in the training and resveratrol group than in the training and placebo group. Both training groups showed an increase in forkhead box O1 protein. In nontraining groups, TIMP-1 protein was lower in the resveratrol-treated group than the placebo-treated group after 8 wk. In conclusion, these data show that exercise training has a strong angiogenic effect, whereas resveratrol supplementation may limit basal and training-induced angiogenesis.

2019 ◽  
Vol 316 (5) ◽  
pp. E829-E836 ◽  
Author(s):  
Hui Zhang ◽  
Ciarán E. Fealy ◽  
John P. Kirwan

Obesity is a major risk factor for metabolic disease. Growth differentiation factor 15 (GDF15) has shown promise as a weight loss agent for obesity in animal studies. In healthy lean humans, fasting plasma GDF15 increases after acute exercise. However, the role of GDF15 in human obesity and the response of plasma GDF15 to exercise training in patients with obesity is unknown. Here, 24 sedentary volunteers with obesity [age: 65 ± 1 yr; body mass index (BMI): 35.3 ± 0.9 kg/m2] participated in a supervised 12-wk aerobic exercise intervention: 1 h/day, 5 days/wk at ~85% maximum heart rate with controlled isocaloric diet. As a result, plasma GDF15 was significantly increased (PRE: 644.1 ± 42.6 pg/ml, POST: 704.4 ± 47.2 pg/ml, P < 0.01) after the exercise intervention. Inconsistent with animal models, ΔGDF15 was not correlated with change in weight, BMI, or resting energy expenditure. However, ΔGDF15 was correlated with a reduction in total fat mass ( P < 0.05), abdominal fat mass ( P < 0.05), and android fat mass ( P ≤ 0.05). Participants with a positive GDF15 response to exercise had increased total fat oxidation (PRE: 0.25 ± 0.05 mg·kg−1·min−1, POST: 0.43 ± 0.07 mg·kg−1·min−1, P ≤ 0.05), metabolic flexibility [PRE: −0.01 ± 0.01 delta respiratory quotient (RQ), POST: 0.06 ± 0.01 delta RQ, P < 0.001], and insulin sensitivity (PRE: 0.33 ± 0.01 QUICKI index, POST: 0.34 ± 0.01 QUICKI index, P < 0.01), suggesting a link between GDF15 and fat mass loss as well as exercise-induced metabolic improvement in humans with obesity. We conclude that the exercise-induced increase in plasma GDF15 and the association with reduced fat mass may indicate a role for GDF15 as a therapeutic target for human obesity.


2018 ◽  
Vol 124 (6) ◽  
pp. 1567-1579 ◽  
Author(s):  
Anne Hecksteden ◽  
Werner Pitsch ◽  
Friederike Rosenberger ◽  
Tim Meyer

Observed response to regular exercise training differs widely between individuals even in tightly controlled research settings. However, the respective contributions of random error and true interindividual differences as well as the relative frequency of nonresponders are disputed. Specific challenges of analyses on the individual level as well as a striking heterogeneity in definitions may partly explain these inconsistent results. Repeated testing during the training phase specifically addresses the requirements of analyses on the individual level. Here we report a first implementation of this innovative design amendment in a head-to-head comparison of existing analytical approaches. To allow for comparative implementation of approaches we conducted a controlled endurance training trial (1 yr walking/jogging, 3 days/wk for 45 min with 60% heart rate reserve) in healthy, untrained subjects ( n = 36, age = 46 ± 8 yr; body mass index 24.7 ± 2.7 kg/m2; V̇o2max 36.6 ± 5.4). In the training group additional V̇o2max tests were conducted after 3, 6, and 9 mo. Duration of the control condition was 6 mo due to ethical constraints. General efficacy of the training intervention could be verified by a significant increase in V̇o2max in the training group ( P < 0.001 vs. control). Individual training response of relevant magnitude (>0.2 × baseline variability in V̇o2max) could be demonstrated by several approaches. Regarding the classification of individuals, only 11 of 20 subjects were consistently classified, demonstrating remarkable disagreement between approaches. These results are in support of relevant interindividual variability in training efficacy and stress the limitations of a responder classification. Moreover, this proof-of-concept underlines the need for tailored methodological approaches for well-defined problems. NEW & NOTEWORTHY This work reports a first implementation of a repeated testing training trial for the investigation of individual response. This design amendment was recently proposed to address specifically the statistical requirements of analyses on the individual level. Moreover, a comprehensive comparison of previously published methods exemplifies the striking heterogeneity of existing approaches.


2012 ◽  
Vol 44 (7) ◽  
pp. 1259-1266 ◽  
Author(s):  
GORDON I. SMITH ◽  
DENNIS T. VILLAREAL ◽  
DAVID R. SINACORE ◽  
KRUPA SHAH ◽  
BETTINA MITTENDORFER

2003 ◽  
Vol 285 (1) ◽  
pp. L161-L168 ◽  
Author(s):  
Gayle E. Hosford ◽  
David M. Olson

Signaling through the hypoxia inducible factor (HIF)-VEGF-VEGF receptor system (VEGF signaling system) leads to angiogenesis and epithelial cell proliferation and is a key mechanism regulating alveolarization in lungs of newborn rats. Hyperoxia exposure (>95% O2 days 4–14) arrests lung alveolarization and may do so through suppression of the VEGF signaling system. Lung tissue mRNA levels of HIF-2α and VEGF increased from days 4–14 in normoxic animals, but hyperoxia suppressed these increases. Levels of HIF-2α and VEGF mRNA were correlated in the air but not the O2-treated group, suggesting that the low levels of HIF-2α observed at high O2 concentrations are not stimulating VEGF expression. VEGF164 protein levels increased with developmental age, and with hyperoxia to day 9, but continuing hyperoxia decreased levels by day 12. VEGFR1 and VEGFR2 mRNA expression also increased in air-exposed animals, and these, too, were significantly decreased by hyperoxia by day 9 and day 12, respectively. Receptor protein levels did not increase with development; however, O2 did decrease protein to less than air values. Hyperoxic suppression of VEGF signaling from days 9–14 may be one mechanism by which alveolarization is arrested.


1968 ◽  
Vol 11 (4) ◽  
pp. 767-776 ◽  
Author(s):  
B. Don Franks ◽  
Elizabeth B. Franks

Eight college students enrolled in group therapy for stuttering were divided into two equal groups for 20 weeks. The training group supplemented therapy with endurance running and calisthenics three days per week. The subjects were tested prior to and at the conclusion of the training on a battery of stuttering tests and cardiovascular measures taken at rest, after stuttering, and after submaximal exercise. There were no significant differences (0.05 level) prior to training. At the conclusion of training, the training group was significandy better in cardiovascular response to exercise and stuttering. Although physical training did not significantly aid the reduction of stuttering as measured in this study, training did cause an increased ability to adapt physiologically to physical stress and to the stress of stuttering.


2008 ◽  
Vol 78 (2) ◽  
pp. 64-69 ◽  
Author(s):  
Choi ◽  
Cho

This study investigated the effect of vitamin B6 deficiency on the utilization and recuperation of stored fuel in physically trained rats. 48 rats were given either vitamin B6-deficient (B6–) diet or control (B6+) diet for 4 weeks and were trained on treadmill for 30 minutes daily. All animals were then subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). The DE group was exercised on treadmill for 1 hour just before being sacrificed. Animals in the AE group were allowed to take a rest for 2 hours after being exercised like the DE group. Glucose and free fatty acids were compared in plasma. Glycogen and triglyceride were compared in liver and skeletal muscle. Protein levels were compared in plasma, liver, and skeletal muscle. Compared with the B6+ group, plasma glucose levels of the B6– group were significantly lower before and after exercise. Muscle glycogen levels of the B6– group were significantly lower than those of the B6+ group regardless of exercise. The liver glycogen level of the B6– group was also significantly lower than that of B6+ group during and after exercise. Before exercise, plasma free fatty acid levels were not significantly different between the B6+ and B6– groups, and plasma free fatty acid levels of the B6– group were significantly lower during and after exercise. The muscle triglyceride level of the B6– group was significantly lower than that of the B6+ group before exercise, and there were no differences between B6+ and B6– groups during and after exercise. Liver triglyceride levels were not significantly different between B6+ and B6– groups. Plasma protein levels of the B6– group were lower than those of B6+ before and after exercise. Muscle protein levels of the B6– group were not significantly different from those of the B6+ group. Liver protein levels of the B6– group were significantly lower than that of the B6+ group after exercise. Liver protein levels of both B6+ and B6– groups were not significantly changed, regardless of exercise. Thus, it is suggested that vitamin B6 deficiency may reduce fuel storage and utilization with exercise in physically trained rats.


Aquaculture ◽  
2021 ◽  
Vol 540 ◽  
pp. 736684
Author(s):  
Laura N. Frank ◽  
Kevin Stuart ◽  
Zachary Skelton ◽  
Mark Drawbridge ◽  
John R. Hyde ◽  
...  

Healthcare ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 637
Author(s):  
Shengyan Sun ◽  
Zhaowei Kong ◽  
Qingde Shi ◽  
Haifeng Zhang ◽  
On-Kei Lei ◽  
...  

Objective: The purpose of this study was to evaluate the effects of a 4-week low-carbohydrate diet (LC) with or without exercise training on cardiometabolic health-related profiles in overweight/obese women. Methods: Fifty overweight/obese Chinese women (age: 22.2 ± 3.3 years, body mass index (BMI): 25.1 ± 3.1 kg·m−2) were randomized to either a LC control group (LC-CON, n = 16), a LC and high-intensity interval training group (LC-HIIT, n = 17), or a LC and moderate-intensity continuous training group (LC-MICT, n = 17). All groups consumed LC for 4 weeks, while the LC-HIIT and LC-MICT groups followed an additional five sessions of HIIT (10 × 6 s cycling sprints and 9 s rest intervals, 2.5 min in total) or MICT (cycling continuously at 50–60% of peak oxygen uptake (VO2peak) for 30 min) weekly. Blood pressure, fasting glucose, insulin sensitivity, and several metabolic or appetite regulating hormones were measured before and after intervention. Results: Significant reductions in body weight (− ~2.5 kg, p < 0.001, η2 = 0.772) and BMI (− ~1 unit, p < 0.001, η2 = 0.782) were found in all groups. Systolic blood pressure was reduced by 5–6 mmHg (p < 0.001, η2 = 0.370); fasting insulin, leptin, and ghrelin levels were also significantly decreased (p < 0.05), while insulin sensitivity was improved. However, there were no significant changes in fasting glucose, glucagon, and gastric inhibitory peptide levels. Furthermore, no group differences were found among the three groups, suggesting that extra training (i.e., LC-HIIT and LC-MICT) failed to trigger additional effects on these cardiometabolic profiles. Conclusions: The short-term carbohydrate restriction diet caused significant weight loss and improved blood pressure and insulin sensitivity in the overweight/obese women, although the combination with exercise training had no additional benefits on the examined cardiometabolic profiles. Moreover, the long-term safety and effectiveness of LC needs further study.


Author(s):  
Myungsoo Choi ◽  
Nayoung Ahn ◽  
Jusik Park ◽  
Kijin Kim

This study analyzed the effects of an exercise training program consisting of a knee joint complex exercise device (leg-link system) with digitally controlled active motion function and squat movement on physical fitness and gait ability of elderly women aged 70 or above. Fifty four (54) elderly women aged 70 or above were divided into three groups as control group (n = 18), aerobic training group (n = 18), and combined training group with resistance and aerobic exercise (n = 18). Health-related physical fitness, gait ability-related physical fitness, and the temporal and spatial parameters of gait ability were compared. The health-related physical fitness after the 12-week training was not significantly altered in control group, whereas combined training group showed significant increase in all factors (p < 0.05) and aerobic training group showed significant increase (p < 0.05) only in the physical efficiency index. The gait ability-related physical fitness and all items of the temporal and spatial parameters of gait were found to have significantly increased (p < 0.05) in combined training group after the 12-week exercise training; however, in aerobic training group, only the factors related to muscular endurance and balance showed significant increase (p < 0.05). This study suggested that the exercise training consisting of knee joint complex exercise with digitally controlled active motion function and squat exercise for strengthening lower extremities and core muscles had positive effects on enhancing the ambulatory competence in elderly women.


Sign in / Sign up

Export Citation Format

Share Document