scholarly journals Inositol monophosphatase 1 as a novel interacting partner of RAGE in pulmonary hypertension

2019 ◽  
Vol 316 (3) ◽  
pp. L428-L444 ◽  
Author(s):  
Ruslan Rafikov ◽  
Matthew L. McBride ◽  
Marina Zemskova ◽  
Sergey Kurdyukov ◽  
Nolan McClain ◽  
...  

Pulmonary arterial hypertension (PAH) is a lethal disease characterized by progressive pulmonary vascular remodeling. The receptor for advanced glycation end products (RAGE) plays an important role in PAH by promoting proliferation of pulmonary vascular cells. RAGE is also known to mediate activation of Akt signaling, although the particular molecular mechanism remains unknown. This study aimed to identify the interacting partner of RAGE that could facilitate RAGE-mediated Akt activation and vascular remodeling in PAH. The progressive angioproliferative PAH was induced in 24 female Sprague-Dawley rats ( n = 8/group) that were randomly assigned to develop PAH for 1, 2, or 5 wk [right ventricle systolic pressure (RVSP) 56.5 ± 3.2, 63.6 ± 1.6, and 111.1 ± 4.5 mmHg, respectively, vs. 22.9 ± 1.1 mmHg in controls]. PAH triggered early and late episodes of apoptosis in rat lungs accompanied by RAGE activation. Mass spectrometry analysis has identified IMPA1 as a novel PAH-specific interacting partner of RAGE. The proximity ligation assay (PLA) confirmed the formation of RAGE/IMPA1 complex in the pulmonary artery wall. Activation of IMPA1 in response to increased glucose 6-phosphate (G6P) is known to play a critical role in inositol synthesis and recycling. Indeed, we confirmed a threefold increase in G6P ( P = 0.0005) levels in lungs of PAH rats starting from week 1 that correlated with accumulation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), membrane translocation of PI3K, and a threefold increase in membrane Akt levels ( P = 0.02) and Akt phosphorylation. We conclude that the formation of the newly discovered RAGE-IMPA1 complex could be responsible for the stimulation of inositol pathways and activation of Akt signaling in PAH.

2014 ◽  
Vol 11 (5) ◽  
pp. 538 ◽  
Author(s):  
Athanasios Rizoulis ◽  
Wafa M. Al Lawati ◽  
Richard D. Pancost ◽  
David A. Polya ◽  
Bart E. van Dongen ◽  
...  

Environmental context The use of groundwater with elevated concentrations of arsenic for drinking, cooking or irrigation has resulted in the worst mass poisoning in human history. This study shows that organic compounds that can be found in arsenic rich subsurface sediments may be used by indigenous microorganisms, contributing to the release of arsenic from the sediments into the groundwater. This study increases our understanding of the range of organic substrates (and their sources) that can potentially stimulate arsenic mobilisation into groundwaters. Abstract Microbial activity is generally accepted to play a critical role, with the aid of suitable organic carbon substrates, in the mobilisation of arsenic from sediments into shallow reducing groundwaters. The nature of the organic matter in natural aquifers driving the reduction of AsV to AsIII is of particular importance but is poorly understood. In this study, sediments from an arsenic rich aquifer in Cambodia were amended with two 13C-labelled organic substrates. 13C-hexadecane was used as a model for potentially bioavailable long chain n-alkanes and a 13C-kerogen analogue as a proxy for non-extractable organic matter. During anaerobic incubation for 8 weeks, significant FeIII reduction and AsIII mobilisation were observed in the biotic microcosms only, suggesting that these processes were microbially driven. Microcosms amended with 13C-hexadecane exhibited a similar extent of FeIII reduction to the non-amended microcosms, but marginally higher AsIII release. Moreover, gas chromatography–mass spectrometry analysis showed that 65% of the added 13C-hexadecane was degraded during the 8-week incubation. The degradation of 13C-hexadecane was microbially driven, as confirmed by DNA stable isotope probing (DNA-SIP). Amendment with 13C-kerogen did not enhance FeIII reduction or AsIII mobilisation, and microbial degradation of kerogen could not be confirmed conclusively by DNA-SIP fractionation or 13C incorporation in the phospholipid fatty acids. These data are, therefore, consistent with the utilisation of long chain n-alkanes (but not kerogen) as electron donors for anaerobic processes, potentially including FeIII and AsV reduction in the subsurface.


2013 ◽  
Vol 202 (7) ◽  
pp. 1123-1138 ◽  
Author(s):  
Qiaoqiao Xu ◽  
Shanshan Huang ◽  
Mingke Song ◽  
Chuan-En Wang ◽  
Sen Yan ◽  
...  

Many genetic mouse models of Huntington’s disease (HD) have established that mutant huntingtin (htt) accumulates in various subcellular regions to affect a variety of cellular functions, but whether and how synaptic mutant htt directly mediates HD neuropathology remains to be determined. We generated transgenic mice that selectively express mutant htt in the presynaptic terminals. Although it was not overexpressed, synaptic mutant htt caused age-dependent neurological symptoms and early death in mice as well as defects in synaptic neurotransmitter release. Mass spectrometry analysis of synaptic fractions and immunoprecipitation of synapsin-1 from HD CAG150 knockin mouse brains revealed that mutant htt binds to synapsin-1, a protein whose phosphorylation is critical for neurotransmitter release. We found that polyglutamine-expanded exon1 htt binds to the C-terminal region of synapsin-1 to reduce synapsin-1 phosphorylation. Our findings point to a critical role for synaptic htt in the neurological symptoms of HD, providing a new therapeutic target.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 243-243 ◽  
Author(s):  
Mei-Juan Tu ◽  
Yu-Zhuo Pan ◽  
Jing-Xin Qiu ◽  
Edward Jae-hoon Kim ◽  
Aiming Yu

243 Background: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death. Better understanding of pancreatic cancer biology and identification of new targets are highly warranted. MicroRNAs (miRs or miRNAs) play a critical role in the control of tumor progression via crosstalk with cancer signaling pathways. Our recent studies showed that miR-1291 improved chemosensitivity through targeting of efflux transporter ABCC1. This current study investigated the mechanistic role of miR-1291 in the suppression of pancreatic tumorigenesis. Methods: PANC-1 and AsPC-1 cell lines were stably transfected with miR-1291. Cell cycle status and apoptosis of stable miR-1291-expressing cells were tested against control cells using flow cytometry. Cells were injected subcutaneously into nude mice and tumorigenesis was measured in vivo. Proteomic studies were performed by two-dimensional difference gel electrophoresis, matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis. Computationally predicted miR-1291 targets were assessed by luciferase reporter assay and Western blot. Primary PDAC and control samples were tested for miR-1291 and target gene expression levels. Results: Our data showed that stable miR-1291-expressing PANC-1 and AsPC-1 cells both showed a significantly lower rate of proliferation than the control cells, which was associated with a cell cycle arrest and enhanced apoptosis. Furthermore, miR-1291 suppressed the tumorigenesis of PANC-1 cells in mouse models in vivo. Proteomic studies revealed the protein level of several cancer-related genes were downregulated by miR-1291, including a pancreatic tumor promoting protein AGR2 which was reduced ~10-fold. Through computational and experimental studies we further identified that FOXA2, a transcription factor governing AGR2 expression, was a direct target of miR-1291. In addition, we found a significant down-regulation of miR-1291 in a set of PDAC patient tumor samples overexpressing AGR2. Conclusions: These results indicate that miR-1291 suppresses pancreatic tumorigenesis via targeting of FOXA2-AGR regulatory pathway providing new insight supporting development of miR-1291-based therapy for PDAC.


2011 ◽  
Vol 301 (4) ◽  
pp. F883-F896 ◽  
Author(s):  
Yu-Jung Lee ◽  
Jeong-Eun Lee ◽  
Hyo-Jung Choi ◽  
Jung-Suk Lim ◽  
Hyun Jun Jung ◽  
...  

The E3 ubiquitin (Ub)-protein ligases (E3s) play a role as regulators of protein trafficking and degradation. We aimed to integrate the profile of E3s in rat kidney and examine the changes in protein abundance of the selected E3s in response to 1-deamino-8-d-arginine vasopressin (dDAVP) stimulation/withdrawal. Sprague-Dawley rats were infused with vehicle ( n = 13), dDAVP for 5 days ( n = 13), or dDAVP was withdrawn for periods (15 min, 30 min, 1, 3, 6, 12, or 24 h) after 5-day infusion ( n = 46). Total RNA was isolated from the inner medulla (IM) for transcriptome analysis. Plasma membrane (PM)- or intracellular vesicle (ICV)-enriched fractions of whole kidney were immunoisolated for liquid chromatography-tandem mass spectrometry analysis. dDAVP infusion for 5 days (D5d) significantly increased urine osmolality, which was maintained during 3-h withdrawal of dDAVP after 5-day infusion (D5d-3h). Consistent with this, aquaporin-2 (AQP2) expression in the PM fractions of D5d and D5d-3h increased, whereas AQP2 expression in the ICV fractions of D5d-3h was further increased, indicating internalization of AQP2. Transcriptome analysis revealed 86 genes of E3s and LC-MS/MS analysis demonstrated 16 proteins of E3s. Among these, seven E3s (BRCA1, UBR4, BRE1B, UHRF1, NEDD4, CUL5, and FBX6) were shared. RT-PCR demonstrated mRNA expressions of the seven identified E3s in the kidney, and immunoblotting demonstrated changes in protein abundance of the selected E3s (BRE1B, NEDD4, and CUL5) in response to dDAVP stimulation/withdrawal or lithium-induced nephrogenic diabetes insipidus. The rate of AQP2 degradation was retarded in mpkCCDc14 cells with small interfering RNA-mediated knockdown of NEDD4 or CUL5. Taken together, identified E3s could be involved in the degradation of proteins associated with vasopressin-induced urine concentration.


2021 ◽  
Vol 22 (18) ◽  
pp. 9916
Author(s):  
Vijaya Karoor ◽  
Derek Strassheim ◽  
Timothy Sullivan ◽  
Alexander Verin ◽  
Nagavedi S. Umapathy ◽  
...  

Pulmonary hypertension (PH) is a progressive cardiovascular disorder in which local vascular inflammation leads to increased pulmonary vascular remodeling and ultimately to right heart failure. The HDAC inhibitor butyrate, a product of microbial fermentation, is protective in inflammatory intestinal diseases, but little is known regarding its effect on extraintestinal diseases, such as PH. In this study, we tested the hypothesis that butyrate is protective in a Sprague–Dawley (SD) rat model of hypoxic PH. Treatment with butyrate (220 mg/kg intake) prevented hypoxia-induced right ventricular hypertrophy (RVH), hypoxia-induced increases in right ventricular systolic pressure (RVSP), pulmonary vascular remodeling, and permeability. A reversal effect of butyrate (2200 mg/kg intake) was observed on elevated RVH. Butyrate treatment also increased the acetylation of histone H3, 25–34 kDa, and 34–50 kDa proteins in the total lung lysates of butyrate-treated animals. In addition, butyrate decreased hypoxia-induced accumulation of alveolar (mostly CD68+) and interstitial (CD68+ and CD163+) lung macrophages. Analysis of cytokine profiles in lung tissue lysates showed a hypoxia-induced upregulation of TIMP-1, CINC-1, and Fractalkine and downregulation of soluble ICAM (sICAM). The expression of Fractalkine and VEGFα, but not CINC-1, TIMP-1, and sICAM was downregulated by butyrate. In rat microvascular endothelial cells (RMVEC), butyrate (1 mM, 2 and 24 h) exhibited a protective effect against TNFα- and LPS-induced barrier disruption. Butyrate (1 mM, 24 h) also upregulated tight junctional proteins (occludin, cingulin, claudin-1) and increased the acetylation of histone H3 but not α-tubulin. These findings provide evidence of the protective effect of butyrate on hypoxic PH and suggest its potential use as a complementary treatment for PH and other cardiovascular diseases.


2017 ◽  
Vol 5 (7) ◽  
pp. 866-874 ◽  
Author(s):  
Victor Ikumawoyi ◽  
Esther Agbaje ◽  
Olufunsho Awodele

BACKGROUND: Napoleona vogelii is used in traditional medicine for cancer management.AIM: The study was conducted to evaluate the antigenotoxic and antioxidant activities of methanol stem bark extract of N. vogelii in male Sprague Dawley rats.MATERIALS AND METHOD: Thirty male Sprague Dawley rats were randomly divided into group 1 (control) administered 10 mL/kg distilled water, groups 2 and 3 were co-administered 100 mg/kg, 200 mg/kg of N. vogelli and 5 mg/kg cyclophosphamide (CPA) respectively for 7 days p.o. Groups 4 and 5 were administered only 5 mg/kg CPA and 200 mg/kg NV respectively.RESULTS: The LD50 oral was greater than 4 g/kg. There were significant (p < 0.0001) increases in plasma enzymatic and non-enzymatic antioxidant enzymes and significant (p < 0.0001) decrease in percentage micronuclei in bone marrow of extract treated rats compared to rats administered 5 mg/kg CPA alone. There was steatosis pointing to cytotoxic injury in the liver of rats co-administered 200 mg/kg NV and 5 mg/kg CPA. Gas chromatography-mass spectrometry analysis of the extract showed the presence of phytol and unsaturated fatty acids.CONCLUSION: N. vogelii possesses antigenotoxic and antioxidant activities associated with the presence of phytochemicals, phytol and unsaturated fatty acids.


2020 ◽  
Vol 9 (2) ◽  
pp. 443
Author(s):  
Mathews Valuparampil Varghese ◽  
Joel James ◽  
Cody A Eccles ◽  
Maki Niihori ◽  
Olga Rafikova ◽  
...  

Vascular remodeling is considered a key event in the pathogenesis of pulmonary arterial hypertension (PAH). However, mechanisms of gaining the proliferative phenotype by pulmonary vascular cells are still unresolved. Due to well-established pyruvate dehydrogenase (PDH) deficiency in PAH pathogenesis, we hypothesized that the activation of another branch of pyruvate metabolism, anaplerosis, via pyruvate carboxylase (PC) could be a key contributor to the metabolic reprogramming of the vasculature. In sugen/hypoxic PAH rats, vascular proliferation was found to be accompanied by increased activation of Akt signaling, which upregulated membrane Glut4 translocation and caused upregulation of hexokinase and pyruvate kinase-2, and an overall increase in the glycolytic flux. Decreased PDH activity and upregulation of PC shuttled more pyruvate to oxaloacetate. This results in the anaplerotic reprogramming of lung vascular cells and their subsequent proliferation. Treatment of sugen/hypoxia rats with the PC inhibitor, phenylacetic acid 20 mg/kg, starting after one week from disease induction, significantly attenuated right ventricular systolic pressure, Fulton index, and pulmonary vascular cell proliferation. PC inhibition reduced the glycolytic shift by attenuating Akt-signaling, glycolysis, and restored mitochondrial pyruvate oxidation. Our findings suggest that targeting PC mediated anaplerosis is a potential therapeutic intervention for the resolution of vascular remodeling in PAH.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1048
Author(s):  
Chiao-Yin Sun ◽  
Chi-Yuan Chou ◽  
Yu-Ying Hsieh ◽  
Kang-Chieh Lo ◽  
Yan-Liang Liou ◽  
...  

The Klotho gene functions as an anti-aging gene. A previous klotho-knockout mice study indicated that neither male nor female gametocytes could accomplish the first meiotic division. It suggested that Klotho might regulate cell division. In this study, we determined the roles of Klotho in cytokinesis in cultural human cells (HEK293 and HeLa) and in zebrafish embryos. Immunoprecipitation, mass spectrometry analysis, and a zebrafish model were used in this study. The results showed that Klotho is located in the midbody, which correlated with cytokinesis related kinases, Aurora kinase B and citron kinases, in the late stage of cytokinesis. There was a spatial correlation between the abscission site and the location of Klotho in the cytokinesis bridge. A three-dimensional structural reconstruction study demonstrated there was a spatial correlation among Klotho, Aurora kinase B, and citron kinases in the midbody. In addition, Klotho depletion inactivated Aurora kinases; it was also indicated that Klotho depletion caused aberrant cell cycle and delayed cytokinesis in a cell model. The study with zebrafish embryos suggested that klotho knockdown caused early embryo development abnormality due to dysregulated cytokinesis. In conclusion, Klotho might have a critical role in cytokinesis regulation by interacting with the cytokinesis related kinases.


Sign in / Sign up

Export Citation Format

Share Document