NO regulates LPS-stimulated cyclooxygenase gene expression and activity in pulmonary artery endothelium

2001 ◽  
Vol 280 (3) ◽  
pp. L450-L457 ◽  
Author(s):  
Jian-Xiong Chen ◽  
Leonard C. Berry ◽  
Brian W. Christman ◽  
Miles Tanner ◽  
Paul R. Myers ◽  
...  

We examined whether nitric oxide (NO) inhibits prostanoid synthesis through actions on cyclooxygenase (COX) gene expression and activity. Bovine pulmonary artery endothelial cells were pretreated for 30 min with the NO donors 1 mM S-nitroso- N-acetylpenicillamine (SNAP), 0.5 mM sodium nitroprusside (SNP), or 0.2 μM spermine NONOate; controls included cells pretreated with either 1 mM N-acetyl-d-penicillamine or the NO synthase (NOS) inhibitor 1 mM N G-nitro-l-arginine methyl ester with and without addition of lipopolysaccharide (LPS; 0.1 μg/ml) for 8 h. COX-1 and COX-2 gene and protein expression were examined by RT-PCR and Western analysis, respectively; prostanoid measurements were made by gas chromatography-mass spectrometry, and COX activity was studied after a 30-min incubation with 30 μM arachidonic acid. LPS induced COX-2 gene and protein expression and caused an increase in COX activity and an eightfold increase in 6-keto-PGF1αrelease. LPS-stimulated COX-2 gene expression was decreased by ∼50% by the NO donors. In contrast, LPS caused a significant reduction in COX-1 gene expression and treatment with NO donors had little effect. SNAP, SNP, and NONOate significantly suppressed LPS-stimulated COX activity and 6-keto-PGF1α release. Our data indicate that increased generation of NO attenuates LPS-stimulated COX-2 gene expression and activity, whereas inhibition of endogenous NOS has little effect.

2009 ◽  
Vol 54 (No. 5) ◽  
pp. 205-214 ◽  
Author(s):  
M.K. Kowalik ◽  
D. Slonina ◽  
J. Kotwica

Progesterone (P<sub4</sub>) decreases oxytocin (OT)-stimulated prostaglandin (PG)F<sub>2&alpha;</sub>, but not PGE<sub>2</sub> secretion from bovine endometrial cells and this effect is partly elicited via a non-genomic route. The aim of this study was to determine whether P<sub>4</sub> and pregnenolone (P<sub>5</sub>), in the presence or absence of OT, influence: (a) the gene expression of enzymes responsible for PG<sub>s</sub> synthesis: cyclooxygenase-2 (COX-2), synthase of PGF<sub>2&alpha;</sub> (PGFS) and PGE=sub>2</sub> (PGES), (b) protein expression of COX-2, PGFS and PGES, and (c) P<sub>4</sub> receptor membrane component 1 (PGRMC1) gene expression in bovine endometrial cells. The epithelial endometrial cells (2.5 × 10<sup>5</sup>/ml) from Days 14–16 of the oestrous cycle were incubated for 72–96 h to attach the cells to the bottom of a well. Next, the cells were preincubated for 30 min with P<sub>4</sub> and P<sub>5</sub> (10<sup>–5</sup>M each) and incubated for 4 h and 6 h alone or with OT (10<sup>–7</sup>M). Thereafter, the medium was collected for PGE<sub>2</sub> and PGFM determination, while cells were harvested for gene and protein expression analysis. The used steroids: (a) inhibited OT-stimulated PGF<sub>2&alpha;</sub>, but not PGE<sub>2</sub> secretion from endometrial cells, (b) did not affect the expression of mRNA for COX-2, PGFS, PGES and PGRMC1 in endometrial cells after 4 and 6 h, (c) they decreased OT-stimulated COX-2 mRNA expression only after 6 h incubation, and (d) did not influence COX-2, PGFS and PGES protein expression after 6 h. These results indicate that P<sub>4</sub> and P<sub>5</sub> inhibit OT-stimulated secretion/production of luteolytic PGF<sub>2&alpha;</sub> by a transcription-independent mechanism and partly by down-regulation of COX-2 mRNA.


2003 ◽  
Vol 284 (4) ◽  
pp. L614-L621 ◽  
Author(s):  
Daohong Chen ◽  
Elena V. Balyakina ◽  
Mayme Lawrence ◽  
Brian W. Christman ◽  
Barbara Meyrick

We examined the hypothesis that the potent vasoconstrictor endothelin (ET)-1 regulates both its own production and production of the vasodilator prostaglandins PGE2 and prostacyclin in sheep peripheral lung vascular smooth muscle cells (PLVSMC). Confluent layers of PLVSMC were exposed to 10 nM ET-1; expression of the prepro (pp)-ET-1, cyclooxygenase (COX)-1, and COX-2 genes was examined by RT-PCR and Western analysis. Intracellular levels of ET-1 were measured by ELISA with and without addition of the protein synthesis inhibitor brefeldin A (50 μg/ml). Prostaglandin levels were measured by gas chromatography-mass spectrometry. Through use of ETA and ETB antagonists (BQ-610 and BQ-788, respectively), the contribution of the ET receptors to COX-1 and -2 expression and ppET-1 gene expression was examined. The contribution of phosphorylated p38 and p44/42 MAPK on COX-1 and COX-2 expression was also examined with MAPK inhibitors (p38, SB-203580 and p44/42, PD-98056). ET-1 resulted in transient increases in ppET-1, COX-1, and COX-2 gene and protein expression and release of 6-keto-PGF1α and PGE2 ( P < 0.05). Both internalization of ET-1 and synthesis of new peptide contributed to an increase in intracellular ET-1 ( P < 0.05). Although increased ppET-1 was regulated by both ETA and ETB, COX-2 expression was upregulated only by ETA; COX-1 expression was unaffected by either antagonist. ET-1 treatment resulted in transient phosphorylation of p38 and p44/42 MAPK; inhibitors of these MAPKs suppressed expression of COX-2 but not COX-1. Our data indicate that local production of ET-1 regulates COX-2 by activation of the ETA receptor and phosphorylation of p38 and p44/42 MAPK in PLVSMC.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Matthew Mannarino ◽  
Hosni Cherif ◽  
Li Li ◽  
Kai Sheng ◽  
Oded Rabau ◽  
...  

Abstract Background There is an increased level of senescent cells and toll-like teceptor-1, -2, -4, and -6 (TLR) expression in degenerating intervertebral discs (IVDs) from back pain patients. However, it is currently not known if the increase in expression of TLRs is related to the senescent cells or if it is a more general increase on all cells. It is also not known if TLR activation in IVD cells will induce cell senescence. Methods Cells from non-degenerate human IVD were obtained from spine donors and cells from degenerate IVDs came from patients undergoing surgery for low back pain. Gene expression of TLR-1,2,4,6, senescence and senescence-associated secretory phenotype (SASP) markers was evaluated by RT-qPCR in isolated cells. Matrix synthesis was verified with safranin-O staining and Dimethyl-Methylene Blue Assay (DMMB) confirmed proteoglycan content. Protein expression of p16INK4a, SASP factors, and TLR-2 was evaluated by immunocytochemistry (ICC) and/or by enzyme-linked immunosorbent assay (ELISA). Results An increase in senescent cells was found following 48-h induction with a TLR-2/6 agonist in cells from both non-degenerate and degenerating human IVDs. Higher levels of SASP factors, TLR-2 gene expression, and protein expression were found following 48-h induction with TLR-2/6 agonist. Treatment with o-vanillin reduced the number of senescent cells, and increased matrix synthesis in IVD cells from back pain patients. Treatment with o-vanillin after induction with TLR-2/6 agonist reduced gene and protein expression of SASP factors and TLR-2. Co-localized staining of p16INK4a and TLR-2 demonstrated that senescent cells have a high TLR-2 expression. Conclusions Taken together our data demonstrate that activation of TLR-2/6 induce senescence and increase TLR-2 and SASP expression in cells from non-degenerate IVDs of organ donors without degeneration and back pain and in cells from degenerating human IVD of patients with disc degeneration and back pain. The senescent cells showed high TLR-2 expression suggesting a link between TLR activation and cell senescence in human IVD cells. The reduction in senescence, SASP, and TLR-2 expression suggest o-vanillin as a potential disease-modifying drug for patients with disc degeneration and back pain.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A91-A91
Author(s):  
Jennifer Chew ◽  
Cedric Uytingco ◽  
Rapolas Spalinskas ◽  
Yifeng Yin ◽  
Joe Shuga ◽  
...  

BackgroundThe tumor microenvironment (TME) is composed of highly heterogeneous extracellular structures and cell types such as endothelial cells, immune cells, and fibroblasts that dynamically influence and communicate with each other. The constant interaction between a tumor and its microenvironment plays a critical role in cancer development and progression and can significantly affect a tumor’s response to therapy and capacity for multi-drug resistance. High resolution analyses of gene and protein expression with spatial context can provide deeper insights into the interactions between tumor cells and surrounding cells within the TME, where a better understanding of the underlying biology can improve treatment efficacy and patient outcomes. Here, we demonstrated the ability to perform streamlined multi-omic tumor analyses by utilizing the 10X Genomics Visium Spatial Gene Expression Solution for FFPE with multiplex protein enablement. This technique simultaneously assesses gene and protein expression to elucidate the immunological profile and microenvironment of different breast cancer samples in conjunction with standard pathological methods.MethodsSerial (5 µm) sections of FFPE human breast cancer samples were placed on Visium Gene Expression (GEX) slides. The Visium GEX slides incorporate ~5,000 molecularly barcoded, spatially encoded capture spots onto which tissue sections are placed, stained, and imaged. Following incubation with a human whole transcriptome, probe-based RNA panel and an immuno-oncology oligo-tagged antibody panel, developed with Abcam conjugated antibodies, the tissues are permeabilized and the representative probes are captured. Paired GEX and protein libraries are generated for each section and then sequenced on an Illumina NovaSeq at a depth of ~50,000 reads per spot. Resulting reads from both libraries are aligned and overlaid with H&E-stained tissue images, enabling analysis of both mRNA and protein expression. Additional analyses and data visualizations were performed on the Loupe Browser v4.1 desktop software.ConclusionsSpatial transcriptomics technology complements pathological examination by combining histological assessment with the throughput and deep biological insight of highly-multiplexed protein detection and RNA-seq. Taken together, our work demonstrated that Visium Spatial technology provides a spatially-resolved, multi-analyte view of the tumor microenvironment, where a greater understanding of cellular behavior in and around tumors can help drive discovery of new biomarkers and therapeutic targets.


2020 ◽  
pp. 273-283
Author(s):  
Iis Wahyuningsih ◽  
Kurnia Ambarwati ◽  
Erninda Ayu Hapsari ◽  
Afifah Fauziyyah ◽  
Azis Ikhsanudin ◽  
...  

The aim of this study was to determine the protection effect of SNEDDS piroxicam ulcerogenic agent against malondialdehyde (MDA) level and protein expression of caspase-3, COX-1, COX-2. The research was conducted using the test animals as much as 30 male white Sprague dawley (SD) rats aged 1-2 months with a weight of 100-200 grams divided into 5 groups. Treatment was given for 28 days orally. On the 29th day blood samples were also taken for the determination of MDA (Malondialdehid) levels by Thiobarbituric Acid Reactive Substance (TBARs) method using a visible spectrophotometer. Rats were sacrificed, then gastric organs were taken for immunohistochemical testing of caspase-3 and COX-1 expression, COX-2. The statistical analysis showed that the piroxicam SNEDDS group and the piroxicam suspension group decreased expression of the caspase-3 protein, increased COX-1 expression, decreased COX-2 and significantly decreased MDA levels. The piroxicam-containing SNEDDS (Self-Nanoemulsifying Drug Delivery System) form has protection against ulcogenic piroxicam.


2008 ◽  
Vol 294 (5) ◽  
pp. F1174-F1184 ◽  
Author(s):  
Valentina Câmpean ◽  
Britta Karpe ◽  
Christian Haas ◽  
Akram Atalla ◽  
Harm Peters ◽  
...  

Capillary neoformation is important in repair of glomerular injury of various origins. VEGF was shown to be crucial for glomerular capillary repair in glomerulonephritis (GN). We reasoned that other angiogenic factors are likewise involved in glomerular capillary remodeling and found angiopoietin 1 and -2 (ANG1 and ANG2) mRNA to be upregulated in cDNA microarrays of microdissected glomeruli of anti-Thy1.1 GN of the rat. We then studied glomerular in situ gene and protein expression of ANG1 and ANG2 and their receptor Tie-2 in the course of anti-Thy1.1 GN, which was induced by injection of OX-7 antibody. Animals were perfusion fixed at days 6 and 12 after GN induction and compared with nonnephritic controls receiving PBS. Capillary damage and repair were quantitatively analyzed using stereological techniques. Gene and protein expression of ANG1 and ANG2 and their receptor Tie-2 was analyzed using real-time quantitative PCR from microdissected glomeruli, nonradioactive in situ hybridization, double immunofluorescence, and Western blot analysis. Glomerular capillarization assessed as length density was significantly lower at day 6 of anti-Thy1.1 GN than in controls; it was back to normal values at day 12. ANG1 and ANG2 gene expression was markedly upregulated at day 6 of the disease compared with controls. Protein expression of ANG1 and ANG2 was confined to podocytes and that of Tie-2 to endothelial cells. At day 12 of anti-Thy1.1 GN when capillary restoration was nearly completed, ANG1 and ANG2 gene expression returned to basal levels, whereas Tie-2 expression was still high. With the use of a combined molecular and in situ approach, the spatial and temporal gene and protein expression of the angiopoietins and their receptor was analyzed in anti-Thy1.1 GN. The results indicate that glomerular expression of ANG1 and ANG2 and Tie-2 is differentially regulated and may contribute to healing and endothelial cell stabilization in experimental GN.


Medicina ◽  
2012 ◽  
Vol 48 (10) ◽  
pp. 78 ◽  
Author(s):  
Jelizaveta Sokolovska ◽  
Sergejs Isajevs ◽  
Olga Sugoka ◽  
Jelena Sharipova ◽  
Natalia Paramonova ◽  
...  

Background and Objective. Glucose transport via GLUT1 protein could be one of additional mechanisms of the antidiabetic action of sulfonylureas. Here, the GLUT1 gene and the protein expression was studied in rats in the course of severe and mild streptozotocin-induced diabetes mellitus and under glibenclamide treatment. Material and Methods. Severe and mild diabetes mellitus was induced using different streptozotocin doses and standard or high fat chow. Rats were treated with glibenclamide (2 mg/kg daily, per os for 6 weeks). The therapeutic effect of glibenclamide was monitored by measuring several metabolic parameters. The GLUT1 mRNA and the protein expression in the kidneys, heart, and liver was studied by means of real-time R T-PCR and immunohistochemistry. Results. The glibenclamide treatment decreased the blood glucose concentration and increased the insulin level in both models of severe and mild diabetes mellitus. Severe diabetes mellitus provoked an increase in both GLUT1 gene and protein expression in the kidneys and the heart, which was nearly normalized by glibenclamide. In the kidneys of mildly diabetic rats, an increase in the GLUT1 gene expression was neither confirmed on the protein level nor influenced by the glibenclamide treatment. In the liver of severely diabetic rats, the heart and the liver of mildly diabetic rats, the GLUT1 gene and the protein expression was changed independently of each other, which might be explained by abortive transcription, and pre- and posttranslational modifications of gene expression. Conclusions. The GLUT1 expression was found to be affected by the glucose and insulin levels and can be modulated by glibenclamide in severely and mildly diabetic rats. Glibenclamide can prevent the liver damage caused by severe hyperglycemia.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Neety Sahu ◽  
Gaurav Budhiraja ◽  
Anuradha Subramanian

Abstract Background Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS. Methods Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting. Results cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2. Conclusions Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K Saavedra ◽  
K Leal ◽  
D Zapata ◽  
S Sagardia ◽  
F Ortega ◽  
...  

Abstract Background Hypercholesterolemia increases the risk of coronary artery disease and its pharmacological treatment has demonstrated, besides reducing cholesterol levels, a decrease in the incidence and mortality from coronary events. The treatment of hypercholesterolemia is mainly driven by using statins. However, the response to pharmacological therapy shows high inter-individual variability, resulting in a variable effect in both lipid lowering and risk reduction. Thus, a better understanding of lipid-lowering mechanism and response variability at molecular level is required. Previously, we demonstrated a deregulation of microRNA (miR) profile in HepG2 cells after atorvastatin treatment, including the downregulation of miR-17-5p and miR-20a-5p which potentially targets the LDL receptor gene (LDLR), suggesting that it might be involved in allowing the LDLR overexpression on the surface of hepatic cells to subsequently capture circulating LDL and to reach the expected lipid-lowering effect. Purpose To determine the role of miR-17-5p and miR-20a-5p on the regulation of LDLR gene expression in HepG2 cells. Methods Cells HepG2 were treated with atorvastatin 10μM for 24 hours. RNA extraction and enrichment of smallRNAs were performed. The gene expression of miR-17-5p, miR-20a-5p, miR-24-3p, miR-93-5p, miR-106a-5p and LDLR were evaluated. To evaluate the effect of miR-17-5p and miR-20a-5p on LDLR gene expression, both miRs were overexpressed or repressed by transfection of mimics or inhibitors respectively into HepG2 cells for 24, 48 and 72 Hours. The gene expression of LDLR was quantified by real time PCR using RPL27 gene as reference gene. The protein expression of LDLR and beta actin were evaluated using western blot and quantified using the ImageJ software. Results Our data showed that atorvastatin significantly repressed the expression of miR-17-5p (P<0.0001) and miR-20a-5p (P=0.0456) in HepG2 cells. In silico studies showed that miR-17-5p interact with the 3'-UTR region of the LDLR. Consistently, when miR-17-5p or miR-20a-5p were overexpressed by using mimics, we observed that gene and protein expression of LDLR decreased significantly (P<0.0001 and P<0.05 respectively). Consistently, when miR-17-5p or miR-20a-5p were repressed by the use inhibitors, we observed that the gene and protein expression of LDLR increases significantly (P<0.005). Conclusions In conclusion, we demonstrate that atorvastatin induces a significant down-regulation of the miR-17-5p and miR-20a-5p in HepG2 cells. The overexpression or repression regulate the gene and protein expression of LDLR. Acknowledgement/Funding FONDECYT N°3160567, FONDECYT N°1171765 and DIUFRO DI19-0094


Antioxidants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 190 ◽  
Author(s):  
Jae Won Ha ◽  
Hyerim Song ◽  
Seong Su Hong ◽  
Yong Chool Boo

Atmospheric particulate matter (PM) is an important cause of skin damage, and an increasing number of studies have been conducted to discover safe, natural materials that can alleviate the oxidative stress and inflammation caused by PM. It has been previously shown that the extract of Ecklonia cava Kjellman, a perennial brown macroalga, can alleviate oxidative stress in epidermal keratinocytes exposed to PM less than 10 microns in diameter (PM10). The present study was undertaken to further examine the anti-inflammatory effects of E. cava extract and its major polyphenolic constituent, dieckol. HaCaT keratinocytes were exposed to PM10 in the presence or absence of E. cava extract or dieckol and analyzed for their viability, prostaglandin E2 (PGE2) release, and gene expression of cyclooxygenase (COX)-1, COX-2, microsomal prostaglandin E2 synthase (mPGES)-1, mPGES-2, and cytosolic prostaglandin E2 synthase (cPGES). PM10 treatment decreased cell viability and increased the production of PGE2, and these changes were partially abrogated by E. cava extract. E. cava extract also attenuated the expression of COX-1, COX-2, and mPGES-2 stimulated by PM10. Dieckol attenuated PGE2 production and the gene expression of COX-1, COX-2, and mPGES-1 stimulated by PM10. This study demonstrates that E. cava extract and dieckol alleviate airborne PM10-induced PGE2 production in keratinocytes through the inhibition of gene expression of COX-1, COX-2, mPGES-1, and/or mPGES-2. Thus, E. cava extract and dieckol are potentially useful natural cosmetic ingredients for counteracting the pro-inflammatory effects of airborne PM.


Sign in / Sign up

Export Citation Format

Share Document