scholarly journals Genomic and non-genomic effects of progesterone and pregnenolone on the function of bovine endometrial cells

2009 ◽  
Vol 54 (No. 5) ◽  
pp. 205-214 ◽  
Author(s):  
M.K. Kowalik ◽  
D. Slonina ◽  
J. Kotwica

Progesterone (P<sub4</sub>) decreases oxytocin (OT)-stimulated prostaglandin (PG)F<sub>2&alpha;</sub>, but not PGE<sub>2</sub> secretion from bovine endometrial cells and this effect is partly elicited via a non-genomic route. The aim of this study was to determine whether P<sub>4</sub> and pregnenolone (P<sub>5</sub>), in the presence or absence of OT, influence: (a) the gene expression of enzymes responsible for PG<sub>s</sub> synthesis: cyclooxygenase-2 (COX-2), synthase of PGF<sub>2&alpha;</sub> (PGFS) and PGE=sub>2</sub> (PGES), (b) protein expression of COX-2, PGFS and PGES, and (c) P<sub>4</sub> receptor membrane component 1 (PGRMC1) gene expression in bovine endometrial cells. The epithelial endometrial cells (2.5 × 10<sup>5</sup>/ml) from Days 14–16 of the oestrous cycle were incubated for 72–96 h to attach the cells to the bottom of a well. Next, the cells were preincubated for 30 min with P<sub>4</sub> and P<sub>5</sub> (10<sup>–5</sup>M each) and incubated for 4 h and 6 h alone or with OT (10<sup>–7</sup>M). Thereafter, the medium was collected for PGE<sub>2</sub> and PGFM determination, while cells were harvested for gene and protein expression analysis. The used steroids: (a) inhibited OT-stimulated PGF<sub>2&alpha;</sub>, but not PGE<sub>2</sub> secretion from endometrial cells, (b) did not affect the expression of mRNA for COX-2, PGFS, PGES and PGRMC1 in endometrial cells after 4 and 6 h, (c) they decreased OT-stimulated COX-2 mRNA expression only after 6 h incubation, and (d) did not influence COX-2, PGFS and PGES protein expression after 6 h. These results indicate that P<sub>4</sub> and P<sub>5</sub> inhibit OT-stimulated secretion/production of luteolytic PGF<sub>2&alpha;</sub> by a transcription-independent mechanism and partly by down-regulation of COX-2 mRNA.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 5957-5957
Author(s):  
Marie-Magdelaine Coudé ◽  
Thorsten Braun ◽  
Jeannig Berrou ◽  
Mélanie Dupont ◽  
Raphael Itzykson ◽  
...  

Abstract Background: The bromodomain-containing protein 4 (BRD4) activates the transcription elongation factor b (P-TEFb) which regulates RNA polymerase II. Conversely, hexamethylene bisacetamide (HMBA) inducible protein 1 (HEXIM1) inactivates P-TEFb. BRD4/HEXIM1 interplay influences cell cycle progression and tumorigenesis. It has been widely demonstrated that BRD4 knockdown or inhibition by JQ1 is associated with c-MYC downregulation and antileukemic activity. We recently reported that the small molecule BRD2/3/4 inhibitor OTX015 (Oncoethix, Lausanne, Switzerland), currently in clinical development, mimics the effects of JQ1 (Braun et al, ASH 2013). We evaluated the effect of OTX015 on c-MYC, BRD2/3/4, and HEXIM1 in human in vitro leukemic models. Methods: c-MYC, BRD2/3/4 and HEXIM1 expression was assessed in six acute myeloid leukemia (AML; K562, HL-60, NB4, NOMO-1, KG1, OCI-AML3) and two acute lymphoid leukemia (ALL; JURKAT and RS4-11) cell lines after exposure to 500 nM OTX015. Quantitative RT-PCR and Western blotting were performed at different time points (24-72h). A heatmap was computed with R-software. Results: c-MYC RNA levels were ubiquitously downregulated in all AML and ALL cell lines after 24h exposure to OTX015 (Figure 1). c-MYC protein levels decreased to a variable extent at 24-72h in all cell lines evaluated other than KG1. BRD2, BRD3 and BRD4 mRNA expression was significantly decreased in K562 cells (known to be OTX015-resistant) after 48h exposure to OTX015 but was increased in HL60 and NOMO-1 cells, while minimal to no increases were observed in other cell lines. OTX015 induced a decrease in BRD2 protein expression in most cell lines, but not in K562 cells. In contrast, decreased BRD4 protein expression was only seen in the OCI-AML3, NB4 and K562 cell lines. BRD3 protein levels were not modified after OTX015 exposure in all cell lines evaluated other than KG1. HEXIM1 mRNA expression increased after 24h exposure to 500 nM OTX015 in all cell lines except OTX015-resistant K562 cells in which the increase was considered insignificant (less than two-fold). Increases in HEXIM1 protein levels were observed in OCI-AML3, JURKAT and RS4-11 cell lines at 24-72h but not in K562 cells. Conclusion: Taken together, these results show that BRD inhibition by OTX015 modulates HEXIM1 gene and protein expression, in addition to c-MYC decrease and BRD variations. HEXIM1 upregulation seems to be restricted to OTX015-sensitive cell lines and was not significantly affected in OTX015-resistant K562 cells. Further studies are needed to clarify the role of HEXIM1 in antileukemic activity of BRD inhibitors. Figure 1: Heatmap of gene expression after exposure to 500 nM OTX015 for 24 or 48h in AML and ALL cell lines. Repression in blue. Overexpression in red. Figure 1:. Heatmap of gene expression after exposure to 500 nM OTX015 for 24 or 48h in AML and ALL cell lines. Repression in blue. Overexpression in red. Disclosures Riveiro: OTD: Employment. Herait:OncoEthix: Employment. Dombret:OncoEthix: Research Funding.


2001 ◽  
Vol 280 (3) ◽  
pp. L450-L457 ◽  
Author(s):  
Jian-Xiong Chen ◽  
Leonard C. Berry ◽  
Brian W. Christman ◽  
Miles Tanner ◽  
Paul R. Myers ◽  
...  

We examined whether nitric oxide (NO) inhibits prostanoid synthesis through actions on cyclooxygenase (COX) gene expression and activity. Bovine pulmonary artery endothelial cells were pretreated for 30 min with the NO donors 1 mM S-nitroso- N-acetylpenicillamine (SNAP), 0.5 mM sodium nitroprusside (SNP), or 0.2 μM spermine NONOate; controls included cells pretreated with either 1 mM N-acetyl-d-penicillamine or the NO synthase (NOS) inhibitor 1 mM N G-nitro-l-arginine methyl ester with and without addition of lipopolysaccharide (LPS; 0.1 μg/ml) for 8 h. COX-1 and COX-2 gene and protein expression were examined by RT-PCR and Western analysis, respectively; prostanoid measurements were made by gas chromatography-mass spectrometry, and COX activity was studied after a 30-min incubation with 30 μM arachidonic acid. LPS induced COX-2 gene and protein expression and caused an increase in COX activity and an eightfold increase in 6-keto-PGF1αrelease. LPS-stimulated COX-2 gene expression was decreased by ∼50% by the NO donors. In contrast, LPS caused a significant reduction in COX-1 gene expression and treatment with NO donors had little effect. SNAP, SNP, and NONOate significantly suppressed LPS-stimulated COX activity and 6-keto-PGF1α release. Our data indicate that increased generation of NO attenuates LPS-stimulated COX-2 gene expression and activity, whereas inhibition of endogenous NOS has little effect.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Matthew Mannarino ◽  
Hosni Cherif ◽  
Li Li ◽  
Kai Sheng ◽  
Oded Rabau ◽  
...  

Abstract Background There is an increased level of senescent cells and toll-like teceptor-1, -2, -4, and -6 (TLR) expression in degenerating intervertebral discs (IVDs) from back pain patients. However, it is currently not known if the increase in expression of TLRs is related to the senescent cells or if it is a more general increase on all cells. It is also not known if TLR activation in IVD cells will induce cell senescence. Methods Cells from non-degenerate human IVD were obtained from spine donors and cells from degenerate IVDs came from patients undergoing surgery for low back pain. Gene expression of TLR-1,2,4,6, senescence and senescence-associated secretory phenotype (SASP) markers was evaluated by RT-qPCR in isolated cells. Matrix synthesis was verified with safranin-O staining and Dimethyl-Methylene Blue Assay (DMMB) confirmed proteoglycan content. Protein expression of p16INK4a, SASP factors, and TLR-2 was evaluated by immunocytochemistry (ICC) and/or by enzyme-linked immunosorbent assay (ELISA). Results An increase in senescent cells was found following 48-h induction with a TLR-2/6 agonist in cells from both non-degenerate and degenerating human IVDs. Higher levels of SASP factors, TLR-2 gene expression, and protein expression were found following 48-h induction with TLR-2/6 agonist. Treatment with o-vanillin reduced the number of senescent cells, and increased matrix synthesis in IVD cells from back pain patients. Treatment with o-vanillin after induction with TLR-2/6 agonist reduced gene and protein expression of SASP factors and TLR-2. Co-localized staining of p16INK4a and TLR-2 demonstrated that senescent cells have a high TLR-2 expression. Conclusions Taken together our data demonstrate that activation of TLR-2/6 induce senescence and increase TLR-2 and SASP expression in cells from non-degenerate IVDs of organ donors without degeneration and back pain and in cells from degenerating human IVD of patients with disc degeneration and back pain. The senescent cells showed high TLR-2 expression suggesting a link between TLR activation and cell senescence in human IVD cells. The reduction in senescence, SASP, and TLR-2 expression suggest o-vanillin as a potential disease-modifying drug for patients with disc degeneration and back pain.


Reproduction ◽  
2015 ◽  
Vol 149 (4) ◽  
pp. 317-327 ◽  
Author(s):  
Martyna Łupicka ◽  
Gabriel Bodek ◽  
Nahum Shpigel ◽  
Ehud Elnekave ◽  
Anna J Korzekwa

The aim of this study was to identify uterine pluripotent cells both in bovine uterine tissues as well in epithelial, stromal, and myometrial uterine cell populations. Moreover, the relationship of pluripotent markers expression with age and the uterine horn side was considered. Uterine tissue was collected from ipsilateral and contralateral horns (days 8–10 of the estrous cycle). Immunohistostaining for C-KIT, OCT3/4, NANOG, and SOX2 in uterine tissue was determined. mRNA expression of C-KIT, OCT3/4, NANOG and SOX2 was evaluated in uterine tissue relative to the age of the cow and uterine horn side. Gene and protein expression of these markers in the uterine luminal epithelial, stromal, and myometrial cells was evaluated by real-time PCR and western blotting respectively. The expression of pluripotent cell markers OCT3/4, NANOG, and SOX2 was identified by flow cytometry assay in epithelial, stromal, and myometrial cells. Multilineage differentiation of the bovine uterine cells was performed. mRNA expression of OCT3/4, NANOG, and SOX2 in uterine tissue was higher in the ipsilateral horn than in the contralateral horn. Flow cytometry assay revealed positive fluorescence for OCT3/4, NANOG, and SOX2 in all uterine cell types. Results showed the age-dependent expression of pluripotent markers in uterine tissue. Beside, the different expression of pluripotent cells in each horn of uterus suggests the influence of ovarian hormones on these characteristics. The highest mRNA and protein expression for pluripotent markers was observed in stromal cells among uterine cells, which indicates this population of cells as the main site of pluripotent cells in the cow uterus.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2371
Author(s):  
Selma Benito-Martínez ◽  
Bárbara Pérez-Köhler ◽  
Marta Rodríguez ◽  
Francisca García-Moreno ◽  
Verónica Gómez-Gil ◽  
...  

Prosthetic mesh infection is a devastating complication of abdominal hernia repair which impairs natural healing in the implant area, leading to increased rates of patient morbidity, mortality, and prolonged hospitalization. This preclinical study was designed to assess the effects on abdominal wall tissue repair of coating meshes with a chlorhexidine or rifampicin-carboxymethylcellulose biopolymer gel in a Staphylococcus aureus (S. aureus) infection model. Partial abdominal wall defects were created in New Zealand white rabbits (n = 20). Four study groups were established according to whether the meshes were coated or not with each of the antibacterial gels. Three groups were inoculated with S. aureus and finally repaired with lightweight polypropylene mesh. Fourteen days after surgery, implanted meshes were recovered for analysis of the gene and protein expression of collagens, macrophage phenotypes, and mRNA expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Compared to uncoated meshes, those coated with either biopolymer gel showed higher collagen 1/3 messenger RNA and collagen I protein expression, relatively increased VEGF mRNA expression, a significantly reduced macrophage response, and lower relative amounts of MMPs mRNAs. Our findings suggest that following mesh implant these coatings may help improving abdominal wall tissue repair in the presence of infection.


1999 ◽  
Vol 277 (2) ◽  
pp. R427-R433 ◽  
Author(s):  
Takako Saito ◽  
San-E Ishikawa ◽  
Sei Sasaki ◽  
Minori Higashiyama ◽  
Shoichiro Nagasaka ◽  
...  

Arginine vasopressin (AVP) plays an important role in the expression of aquaporin (AQP-2) in the collecting duct. The present study was undertaken to determine whether there is an AVP-independent regulation of AQP-2 gene expression in homozygous Brattleboro rats in which endogenous AVP is absent. Exogenous administration of 1-deamino-8-d-AVP produced an antidiuresis and expressed AQP-2 mRNA and AQP-2 protein in the renal medulla of the homozygous Brattleboro rats. Twelve hours of water deprivation produced severe dehydration in the homozygous Brattleboro rats, such that urinary osmolality increased from 200 to 649 mosmol/kgH2O. However, no increase in AQP-2 mRNA expression was observed after this dehydration, and the medullary tissue content and urinary excretion of AQP-2 also remained unchanged. Increases in AQP-2 mRNA expression and AQP-2 protein were evident in Long-Evans rats after 64 h of water deprivation, with a severity of dehydration almost equal to the 12-h dehydrated, homozygous Brattleboro rats. These results indicate the lack of an AVP-independent mechanism for upregulating AQP-2 mRNA expression in renal collecting duct cells.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A91-A91
Author(s):  
Jennifer Chew ◽  
Cedric Uytingco ◽  
Rapolas Spalinskas ◽  
Yifeng Yin ◽  
Joe Shuga ◽  
...  

BackgroundThe tumor microenvironment (TME) is composed of highly heterogeneous extracellular structures and cell types such as endothelial cells, immune cells, and fibroblasts that dynamically influence and communicate with each other. The constant interaction between a tumor and its microenvironment plays a critical role in cancer development and progression and can significantly affect a tumor’s response to therapy and capacity for multi-drug resistance. High resolution analyses of gene and protein expression with spatial context can provide deeper insights into the interactions between tumor cells and surrounding cells within the TME, where a better understanding of the underlying biology can improve treatment efficacy and patient outcomes. Here, we demonstrated the ability to perform streamlined multi-omic tumor analyses by utilizing the 10X Genomics Visium Spatial Gene Expression Solution for FFPE with multiplex protein enablement. This technique simultaneously assesses gene and protein expression to elucidate the immunological profile and microenvironment of different breast cancer samples in conjunction with standard pathological methods.MethodsSerial (5 µm) sections of FFPE human breast cancer samples were placed on Visium Gene Expression (GEX) slides. The Visium GEX slides incorporate ~5,000 molecularly barcoded, spatially encoded capture spots onto which tissue sections are placed, stained, and imaged. Following incubation with a human whole transcriptome, probe-based RNA panel and an immuno-oncology oligo-tagged antibody panel, developed with Abcam conjugated antibodies, the tissues are permeabilized and the representative probes are captured. Paired GEX and protein libraries are generated for each section and then sequenced on an Illumina NovaSeq at a depth of ~50,000 reads per spot. Resulting reads from both libraries are aligned and overlaid with H&E-stained tissue images, enabling analysis of both mRNA and protein expression. Additional analyses and data visualizations were performed on the Loupe Browser v4.1 desktop software.ConclusionsSpatial transcriptomics technology complements pathological examination by combining histological assessment with the throughput and deep biological insight of highly-multiplexed protein detection and RNA-seq. Taken together, our work demonstrated that Visium Spatial technology provides a spatially-resolved, multi-analyte view of the tumor microenvironment, where a greater understanding of cellular behavior in and around tumors can help drive discovery of new biomarkers and therapeutic targets.


2008 ◽  
Vol 294 (5) ◽  
pp. F1174-F1184 ◽  
Author(s):  
Valentina Câmpean ◽  
Britta Karpe ◽  
Christian Haas ◽  
Akram Atalla ◽  
Harm Peters ◽  
...  

Capillary neoformation is important in repair of glomerular injury of various origins. VEGF was shown to be crucial for glomerular capillary repair in glomerulonephritis (GN). We reasoned that other angiogenic factors are likewise involved in glomerular capillary remodeling and found angiopoietin 1 and -2 (ANG1 and ANG2) mRNA to be upregulated in cDNA microarrays of microdissected glomeruli of anti-Thy1.1 GN of the rat. We then studied glomerular in situ gene and protein expression of ANG1 and ANG2 and their receptor Tie-2 in the course of anti-Thy1.1 GN, which was induced by injection of OX-7 antibody. Animals were perfusion fixed at days 6 and 12 after GN induction and compared with nonnephritic controls receiving PBS. Capillary damage and repair were quantitatively analyzed using stereological techniques. Gene and protein expression of ANG1 and ANG2 and their receptor Tie-2 was analyzed using real-time quantitative PCR from microdissected glomeruli, nonradioactive in situ hybridization, double immunofluorescence, and Western blot analysis. Glomerular capillarization assessed as length density was significantly lower at day 6 of anti-Thy1.1 GN than in controls; it was back to normal values at day 12. ANG1 and ANG2 gene expression was markedly upregulated at day 6 of the disease compared with controls. Protein expression of ANG1 and ANG2 was confined to podocytes and that of Tie-2 to endothelial cells. At day 12 of anti-Thy1.1 GN when capillary restoration was nearly completed, ANG1 and ANG2 gene expression returned to basal levels, whereas Tie-2 expression was still high. With the use of a combined molecular and in situ approach, the spatial and temporal gene and protein expression of the angiopoietins and their receptor was analyzed in anti-Thy1.1 GN. The results indicate that glomerular expression of ANG1 and ANG2 and Tie-2 is differentially regulated and may contribute to healing and endothelial cell stabilization in experimental GN.


Medicina ◽  
2012 ◽  
Vol 48 (10) ◽  
pp. 78 ◽  
Author(s):  
Jelizaveta Sokolovska ◽  
Sergejs Isajevs ◽  
Olga Sugoka ◽  
Jelena Sharipova ◽  
Natalia Paramonova ◽  
...  

Background and Objective. Glucose transport via GLUT1 protein could be one of additional mechanisms of the antidiabetic action of sulfonylureas. Here, the GLUT1 gene and the protein expression was studied in rats in the course of severe and mild streptozotocin-induced diabetes mellitus and under glibenclamide treatment. Material and Methods. Severe and mild diabetes mellitus was induced using different streptozotocin doses and standard or high fat chow. Rats were treated with glibenclamide (2 mg/kg daily, per os for 6 weeks). The therapeutic effect of glibenclamide was monitored by measuring several metabolic parameters. The GLUT1 mRNA and the protein expression in the kidneys, heart, and liver was studied by means of real-time R T-PCR and immunohistochemistry. Results. The glibenclamide treatment decreased the blood glucose concentration and increased the insulin level in both models of severe and mild diabetes mellitus. Severe diabetes mellitus provoked an increase in both GLUT1 gene and protein expression in the kidneys and the heart, which was nearly normalized by glibenclamide. In the kidneys of mildly diabetic rats, an increase in the GLUT1 gene expression was neither confirmed on the protein level nor influenced by the glibenclamide treatment. In the liver of severely diabetic rats, the heart and the liver of mildly diabetic rats, the GLUT1 gene and the protein expression was changed independently of each other, which might be explained by abortive transcription, and pre- and posttranslational modifications of gene expression. Conclusions. The GLUT1 expression was found to be affected by the glucose and insulin levels and can be modulated by glibenclamide in severely and mildly diabetic rats. Glibenclamide can prevent the liver damage caused by severe hyperglycemia.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3364 ◽  
Author(s):  
Liang Jing ◽  
Jing-Ru Jiang ◽  
Dong-Mei Liu ◽  
Ji-Wen Sheng ◽  
Wei-Fen Zhang ◽  
...  

The purpose of this study was to characterize the polysaccharides from Athyrium multidentatum (Doll.) Ching (AMC) rhizome and explore the protective mechanism against d-galactose-induced oxidative stress in aging mice. Methods: A series of experiments, including molecular weight, monosaccharide composition, Fourier transform infrared (FT-IR) spectroscopy, and 1H nuclear magnetic resonance (1H NMR) spectroscopy were carried out to characterize AMC polysaccharides. The mechanism was investigated exploring d-galactose-induced aging mouse model. Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) and western blotting assays were performed to assess the gene and protein expression in liver. Key findings: Our results showed that AMC polysaccharides were mainly composed of mannose (Man), rhamnose (Rha), glucuronic acid (Glc A), glucose (Glc), galactose (Gal), arabinose (Ara), and fucose (Fuc) in a molar ratio of 0.077:0.088:0.09:1:0.375:0.354:0.04 with a molecular weight of 33203 Da (Mw). AMC polysaccharides strikingly reversed d-galactose-induced changes in mice, including upregulated phosphatidylinositol 3-kinase (PI3K), Akt, nuclear factor-erythroid 2-related factor 2 (Nrf2), forkhead box O3a (FOXO3a), and hemeoxygenase-1 (HO-1) mRNA expression, raised Bcl-2/Bax ratio, downregulated caspase-3 mRNA expression, enhanced Akt, phosphorylation of Akt (p-Akt), Nrf2 and HO-1 protein expression, decreased caspase-3, and Bax protein expression. Conclusion: AMC polysaccharides attenuated d-galactose-induced oxidative stress and cell apoptosis by activating the PI3K/AKT pathway, which might in part contributed to their anti-aging activity.


Sign in / Sign up

Export Citation Format

Share Document