Functional characterization of chicken glucocorticoid and mineralocorticoid receptors

2010 ◽  
Vol 298 (5) ◽  
pp. R1257-R1268 ◽  
Author(s):  
Monika Proszkowiec-Weglarz ◽  
Tom E. Porter

Glucocorticoid (GR) and mineralocorticoid (MR) receptors are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. Little is known about the function of GR and MR in avian species. Recently, the chicken homologue of the GR (cGR) gene was cloned, and its tissue-specific expression was characterized, whereas the full-length sequence of the chicken MR (cMR) gene remains unknown. Therefore, the aims of this project were to clone the full-length cMR and to functionally characterize both chicken receptors. Cos-7 cells were transiently transfected with cGR or cMR expression vectors along with a glucocorticoid response element-luciferase (GRE-Luc) reporter construct. Transfected cells were then treated with increasing doses of corticosterone (CORT) or aldosterone (ALDO) alone and with GR or MR antagonists (ZK98299 and spironolactone, respectively). Transactivation of cGR or cMR was evaluated by luciferase assay. CORT and ALDO induced cGR- and cMR-driven transcriptional activity in a dose-dependent manner. Each receptor responded to both steroids, but cMR transcriptional activity was induced by lower levels of CORT and ALDO than cGR. Coexpression of both chicken corticosteroid receptors in Cos-7 cells had no synergistic or additive effect on CORT- or ALDO-induced transcriptional activity. Corticosteroid-dependent transactivation of cGR and cMR was partially blocked by antagonists. ZK98299 showed high specificity to cGR, while spironolactone had agonist properties toward both receptors. Immunocytochemistry was used to assess the cellular localization of both receptors. Corticosteroids induced translocation of both receptors into the nucleus. The functional properties of cGR and cMR determined in this study will be helpful in defining the physiological roles of GR and MR in avian species.

2020 ◽  
Vol 21 (18) ◽  
pp. 6706
Author(s):  
Geon-Hee Kim ◽  
Xue-Quan Fang ◽  
Woo-Jin Lim ◽  
Jooho Park ◽  
Tae-Bong Kang ◽  
...  

Constitutive activation of the β-catenin dependent canonical Wnt signaling pathway, which enhances tumor growth and progression in multiple types of cancer, is commonly observed in melanoma. LEF1 activates β-catenin/TCF4 transcriptional activity, promoting tumor growth and progression. Although several reports have shown that LEF1 is highly expressed in melanoma, the functional role of LEF1 in melanoma growth is not fully understood. While A375, A2058, and G361 melanoma cells exhibit abnormally high LEF1 expression, lung cancer cells express lower LEF1 levels. A luciferase assay-based high throughput screening (HTS) with a natural compound library showed that cinobufagin suppressed β-catenin/TCF4 transcriptional activity by inhibiting LEF1 expression. Cinobufagin decreases LEF1 expression in a dose-dependent manner and Wnt/β-catenin target genes such as Axin-2, cyclin D1, and c-Myc in melanoma cell lines. Cinobufagin sensitively attenuates cell viability and induces apoptosis in LEF1 expressing melanoma cells compared to LEF1-low expressing lung cancer cells. In addition, ectopic LEF1 expression is sufficient to attenuate cinobufagin-induced apoptosis and cell growth retardation in melanoma cells. Thus, we suggest that cinobufagin is a potential anti-melanoma drug that suppresses tumor-promoting Wnt/β-catenin signaling via LEF1 inhibition.


2021 ◽  
Author(s):  
Bonan Liu ◽  
Indu R Chandrashekaran ◽  
Olga Ilyichova ◽  
Damien Valour ◽  
Fabien Melchiore ◽  
...  

Glucocorticoids are steroid hormones that are essential for life in mammals. Therapeutically, they are some of the most cost-effective drugs for the treatment of inflammatory diseases ranging from skin rashes to COVID-19, but their use is limited by adverse effects. Glucocorticoids exert their effects via the glucocorticoid receptor, a type I nuclear hormone receptor which modulates gene expression. The transcriptional activity of some related, but nuclear restricted, type II nuclear hormone receptors can be enhanced by a family of intracellular transport proteins, the fatty acid binding proteins (FABPs). We find that the transcriptional activity of the GR can be altered by a sub-set of FABP family members dependent on the GR-ligand. The ability of some FABPs to selectively promote or limit the transcriptional activity of the GR in a ligand-dependent manner could facilitate the discovery of drugs that narrow GR activity to only the desired subset of therapeutically relevant genes.


PPAR Research ◽  
2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
Makoto Seo ◽  
Ikuo Inoue ◽  
Masaaki Ikeda ◽  
Takanari Nakano ◽  
Seiichiro Takahashi ◽  
...  

Statins increase peroxisome proliferator-activated receptor (PPAR) mRNA expression, but the mechanism of this increased PPAR production remains elusive. To examine the regulation of PPAR production, we examined the effect of 7 statins (atorvastatin, cerivastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin) on human PPAR promoter activity, mRNA expression, nuclear protein levels, and transcriptional activity. The main results are as follows. (1) Majority of statins enhanced PPAR promoter activity in a dose-dependent manner in HepG2 cells transfected with the human PPAR promoter. This enhancement may be mediated by statin-induced HNF-4. (2) PPAR mRNA expression was increased by statin treatment. (3) The PPAR levels in nuclear fractions were increased by statin treatment. (4) Simvastatin, pravastatin, and cerivastatin markedly enhanced transcriptional activity in 293T cells cotransfected with acyl-coenzyme A oxidase promoter and PPAR/RXR expression vectors. In summary, these data demonstrate that PPAR production and activation are upregulated through the PPAR promoter activity by statin treatment.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2402-2402
Author(s):  
Fumihiko Mouri ◽  
Junichi Tsukada ◽  
Akiyoshi Fukamizu ◽  
Yoshiya Tanaka

Abstract PU.1, a member of the Ets family transcription factors, is expressed restrictively in hematopoietic cells including monocytes and macrophages, and plays critical roles in the inflammatory responses and the development of hematopoietic cells. CREB-binding protein (CBP) regulates transcription by acetylating not only histones but also certain transcription factors. Here, we demonstrated that a specific inhibitor of histone deacetylases, trichostatin A (TSA) inhibits PU.1 transcriptional activity in monocytes and further showed that deletion of a histone acetyltransferase (HAT) domain of CBP resulted in synergistic cooperativity between CBP and PU.1. When human monocytic cells THP-1 were treated with TSA, our immunoprecipitaion and western blot assay showed that TSA enhanced PU.1 acetylation. Next, we investigated the effect of TSA on the transcriptional regulation of PU.1-dependent gene promoters such as the human prointerleukin 1β (IL1B) gene and the human granulocyte-macrophage colony-stimulating factor receptor α (GM-CSFRα) gene in transient transfection studies. Two distinct luciferase reporter plasmids (Luc) for the IL1B gene promoter and the GM-CSFRα gene promoter, IL1B-Luc and GM-CSFRα-Luc were used. When these plasmids were transiently transfected into THP-1 cells, TSA suppressed LPS-induced activities for the IL1B promoter and the GM-CSFRα promoter in a dose-dependent manner. In contrast, when NF-κB luciferase reporter, NF-κB-Luc was transfected into THP-1 cells, TSA synergistically increased LPS-induced NF-κB activities. Moreover, when a PU.1 expression vector, pECEPU.1 was cotransfected into PU.1-deficient murine thymocytes EL4 along with either IL1B-Luc or GM-CSFRα-Luc. The PU.1-induced promoter activities were strongly suppressed through TSA treatment. FACS analysis further indicated that TSA suppressed LPS-induced expression of IL-1β and GM-CSFRα proteins. In addition, our EMSA data showed that TSA treatment did not affect DNA binding activity of PU.1 to the IL1B promoter. PU.1 has been shown to interact physically with CBP to transactivate their target genes. In our study, expression vectors for CBP wild-type or with a deletion of its HAT domain was cotransfected into EL4 cells along with IL1B-Luc and pECEPU.1. The HAT activity-deficient mutant showed synergistic transcriptional activity with PU.1 more strongly than the wild-type CBP. In this regard, our GST-pulldown assay showed that deletion of CBP HAT domain did not change binding affinity of CBP for PU.1. Our results propose a novel molecular mechanism by which PU.1-dependent genes is negatively regulated by HAT-induced acetylation in monocytes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10032
Author(s):  
Xiaohan Li ◽  
Bing Zhang ◽  
Fuyu Li ◽  
Kequan Yu ◽  
Yunfei Bai

Circular RNAs (circRNAs) are considered as functional biomolecules with tissue/development-specific expression patterns. Generally, a single gene may generate multiple circRNA variants by alternative splicing, which contain different combinations of exons and/or introns. Due to the low abundance of circRNAs as well as overlapped with their linear counterparts, circRNA enrichment protocol is needed prior to sequencing. Compared with numerous algorithms, which use back-splicing reads for detection and functional characterization of circRNAs, original bioinformatic analyzing tools have been developed to large-scale determination of full-length circRNAs and accurate quantification. This review provides insights into the complexity of circRNA biogenesis and surveys the recent progresses in the experimental and bioinformatic methodologies that focus on accurately full-length circRNAs identification.


Endocrinology ◽  
2008 ◽  
Vol 149 (5) ◽  
pp. 2411-2422 ◽  
Author(s):  
Deanna L. Howarth ◽  
Sheran H. W. Law ◽  
Benjamin Barnes ◽  
Julie M. Hall ◽  
David E. Hinton ◽  
...  

The availability of multiple teleost (bony fish) genomes is providing unprecedented opportunities to understand the diversity and function of gene duplication events using comparative genomics. Here we describe the cloning and functional characterization of two novel vitamin D receptor (VDR) paralogs from the freshwater teleost medaka (Oryzias latipes). VDR sequences were identified through mining of the medaka genome database in which gene organization and structure was determined. Two distinct VDR genes were identified in the medaka genome and mapped to defined loci. Each VDR sequence exhibits unique intronic organization and dissimilar 5′ untranslated regions, suggesting they are not isoforms of the same gene locus. Phylogenetic comparison with additional teleosts and mammalian VDR sequences illustrate that two distinct clusters are formed separating aquatic and terrestrial species. Nested within the teleost cluster are two separate clades for VDRα and VDRβ. The topology of teleost VDR sequences is consistent with the notion of paralogous genes arising from a whole genome duplication event prior to teleost radiation. Functional characterization was conducted through the development of VDR expression vectors including Gal4 chimeras containing the yeast Gal4 DNA binding domain fused to the medaka VDR ligand binding domain and full-length protein. The common VDR ligand 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] resulted in significant transactivation activity with both the Gal4 and full-length constructs of medaka (m) VDRβ. Comparatively, transactivation of mVDRα with 1α,25(OH)2D3 was highly attenuated, suggesting a functional divergence between these two nuclear receptor paralogs. We additionally demonstrate through coactivator studies that mVDRα is still functional; however, it exhibits a different sensitivity to 1α,25(OH)2D3, compared with VDRβ. These results suggest that in mVDRα and VDRβ have undergone a functional divergence through a process of sub- and/or neofunctionalization of VDR nuclear receptor gene pairs.


Author(s):  
C. Jennermann ◽  
S. A. Kliewer ◽  
D. C. Morris

Peroxisome proliferator-activated receptor gamma (PPARg) is a member of the nuclear hormone receptor superfamily and has been shown in vitro to regulate genes involved in lipid metabolism and adipocyte differentiation. By Northern analysis, we and other researchers have shown that expression of this receptor predominates in adipose tissue in adult mice, and appears first in whole-embryo mRNA at 13.5 days postconception. In situ hybridization was used to find out in which developing tissues PPARg is specifically expressed.Digoxigenin-labeled riboprobes were generated using the Genius™ 4 RNA Labeling Kit from Boehringer Mannheim. Full length PPAR gamma, obtained by PCR from mouse liver cDNA, was inserted into pBluescript SK and used as template for the transcription reaction. Probes of average size 200 base pairs were made by partial alkaline hydrolysis of the full length transcripts. The in situ hybridization assays were performed as described previously with some modifications. Frozen sections (10 μm thick) of day 18 mouse embryos were cut, fixed with 4% paraformaldehyde and acetylated with 0.25% acetic anhydride in 1.0M triethanolamine buffer. The sections were incubated for 2 hours at room temperature in pre-hybridization buffer, and were then hybridized with a probe concentration of 200μg per ml at 70° C, overnight in a humidified chamber. Following stringent washes in SSC buffers, the immunological detection steps were performed at room temperature. The alkaline phosphatase labeled, anti-digoxigenin antibody and detection buffers were purchased from Boehringer Mannheim. The sections were treated with a blocking buffer for one hour and incubated with antibody solution at a 1:5000 dilution for 2 hours, both at room temperature. Colored precipitate was formed by exposure to the alkaline phosphatase substrate nitrobluetetrazoliumchloride/ bromo-chloroindlylphosphate.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


Author(s):  
Hongtao Li ◽  
Peng Chen ◽  
Lei Chen ◽  
Xinning Wang

Background: Nuclear factor kappa B (NF-κB) is usually activated in Wilms tumor (WT) cells and plays a critical role in WT development. Objective: The study purpose was to screen a NF-κB inhibitor from natural product library and explore its effects on WT development. Methods: Luciferase assay was employed to assess the effects of natural chemical son NF-κB activity. CCK-8 assay was conducted to assess cell growth in response to naringenin. WT xenograft model was established to analyze the effect of naringenin in vivo. Quantitative real-time PCR and Western blot were performed to examine the mRNA and protein levels of relative genes, respectively. Results: Naringenin displayed significant inhibitory effect on NF-κB activation in SK-NEP-1 cells. In SK-NEP-1 and G-401 cells, naringenin inhibited p65 phosphorylation. Moreover, naringenin suppressed TNF-α-induced p65 phosphorylation in WT cells. Naringenin inhibited TLR4 expression at both mRNA and protein levels in WT cells. CCK-8 staining showed that naringenin inhibited cell growth of the two above WT cells in dose-and time-dependent manner, whereas Toll-like receptor 4 (TLR4) over expression partially reversed the above phenomena. Besides, naringenin suppressed WT tumor growth in dose-and time-dependent manner in vivo. Western blot found that naringenin inhibited TLR4 expression and p65 phosphorylation in WT xenograft tumors. Conclusion: Naringenin inhibits WT development viasuppressing TLR4/NF-κB signaling


2013 ◽  
Vol 142-143 ◽  
pp. 447-457 ◽  
Author(s):  
Afonso C.D. Bainy ◽  
Akira Kubota ◽  
Jared V. Goldstone ◽  
Roger Lille-Langøy ◽  
Sibel I. Karchner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document