scholarly journals High-throughput sequencing reveals differential expression of miRNAs in prehierarchal follicles of laying and brooding geese

2016 ◽  
Vol 48 (7) ◽  
pp. 455-463 ◽  
Author(s):  
Jing Yu ◽  
Ke He ◽  
Ting Ren ◽  
Yaping Lou ◽  
Ayong Zhao

Broodiness is the primary factor influencing egg production in geese, in which several genes and miRNAs participate. Detailed spatiotemporal profiles of miRNAs encompassing follicle development levels, however, are lacking. In this study, we collected preovulatory follicles (classified as small white follicles, large white follicles, and small yellow follicles) from brooding and laying geese and aimed to analyze microRNA (miRNA or miR) during folliculogenesis. High-throughput sequencing and bioinformatics analysis were used to identify the miRNAs involved in follicle development. The let7 family, miR-10 family, and miR-143 family were abundant in these libraries, and they have been suggested to play a housekeeping role during folliculogenesis. Joint comparisons revealed 23 upregulated and 21 downregulated miRNAs (in at least two comparisons of follicles during brooding and laying, P < 0.1) in the laying stage. Unlike reproduction pathways reported for ovaries, GO and KEGG analysis suggested pathways for cell apoptosis and proliferation, such as the regulation of actin cytoskeleton, endocytosis, axon guidance, pathways in cancer, tight junctions, focal adhesion, the MAPK signaling pathway, cytokine-cytokine receptor interactions, and the Wnt signaling pathway in folliculogenesis. This study revealed the miRNAs that were directly involved in follicular atresia, and our results added to the understanding of the functional involvement of miRNAs during specific stages of follicle development.

2020 ◽  
Author(s):  
caixia li ◽  
Chuandi Men ◽  
Weihong Yang ◽  
Qi Liu ◽  
Shupeng Liu ◽  
...  

Abstract Background: Metastasis is an important factor of high mortality in ovarian cancer. Neutrophils are involved in multiple pathologic mechanisms of cancer,including invasion and metastasis. However, the relationship of neutrophils and invasion and metastasis in ovarian cancer is unclear,as well as the exact mechanism.Methods:To verify the relationship of neutrophils and invasion and metastasis in ovarian cancer,we tested the expression of CD11b in 24 groups of benign and malignant ovarian tumor tissues.And then,we tested the expression of CD11b,CXCL8,and CXCR1 in 16 cases of ovarian cancer,including primary lesions, metastatic lesions and adjacent carcinoma tissues.We successfully build tumor associated neutrophils research model (N1 and N2) and prove that N2-neutrophils can promote the invasion and metastasis of ovarian cancer. Next,we screened the significantly changed MAPK signaling pathway by high-throughput sequencing. And then confirmed this conclusion by molecular biology experiments. Results:The expression of CD11b was significantly higher in malignant tumor than benign tumor tissues tested by western blot and Immunohistochemistry.The expression of CD11b,CXCL8 and CXCR1 is highest in ovarian cancermetastases ,followed by the primary lessions, and then the adjacent carcinoma tissues tested by PCR and WB methods.We proved that N2-neutrophils can promote the invasion and metastasis of ovarian cancer by transwell assay.Forthermore,we detected the related indicators of metastasis including MMP-2,MMP-9,E-Cadherin,N-cadherin and Vimentin by PCR and WB methods.Next,we screened the significantly changed MAPK signaling pathway by High-throughput sequencing through comparing ovarian cancer cells before and after co-cultured with N2-neutrophils. At last,we found the key gene P38 of MAPK signaling pathway by molecular biology experiments. Conclusions: N2-neutrophils promote the invasion and metastasis of ovarian cancer by Upregulating MAPK signaling pathway, find a key gene P38.


2020 ◽  
Author(s):  
Dawei Zhang ◽  
Wenjing Wu ◽  
Xin Huang ◽  
Ke Xu ◽  
Cheng Zheng ◽  
...  

Abstract Background: Chinese domestic pig breeds are reputed for pork quality, but their low ratio of lean-to-fat carcass weight decreases production efficiency. A better understanding of the genetic regulation network of SC fat tissue is necessary for the rational selection of Chinese domestic pig breeds. In the present study, SC adipocytes were isolated from Jiaxing Black pigs (a Chinese indigenous pig breed with redundant SC fat deposition) and Large White pigs (a lean-type pig breed with relatively low SC fat deposition) and the expression profiles of mRNAs and lncRNAs were compared by RNA-seq analysis to identify biomarkers correlated with the differences of SC fat deposition between the two breeds.Results: A total of 3,371 differentially expressed genes (DEGs) and 1,182 differentially expressed lncRNAs (DELs) were identified in SC adipocytes between Jiaxing Black (JX) and Large White (LW) pigs, which included 797 upregulated mRNAs, 2,574 downregulated mRNAs, 461 upregulated lncRNAs and 721 downregulated lncRNAs. Gene Ontology and KEGG pathway analyses revealed that the DEGs and DELs were mainly involved in the immune response, cell fate determination, PI3K-Akt signaling pathway and MAPK signaling pathway, which are known to be related to adipogenesis and lipid metabolism. The expression levels of DEGs and DELs according to the RNA-seq data were verified by quantitative PCR, which showed 81.8% consistency. The differences in MAPK pathway activity between JX and LW pigs was confirmed by western blot analysis, with <100-fold elevated p38 phosphorylation in JX pigs.Conclusions: This study offers a detailed characterization of mRNAs and lncRNAs in fat- and lean-type pig breeds. The activity of the MAPK signaling pathway was found to be associated with subcutaneous adipogenesis. These results greatly enhance our understanding of the molecular mechanisms regulating SC fat deposition in pigs.


Lupus ◽  
2021 ◽  
pp. 096120332110614
Author(s):  
Yan Liang ◽  
Ji Zhang ◽  
Wenxian Qiu ◽  
Bo Chen ◽  
Ying Zhou ◽  
...  

Objective Lupus nephritis (LN) is a major end-organ complication of systemic lupus erythematosus (SLE), and the molecular mechanism of LN is not completely clear. Accumulating pieces of evidence indicate the potential vital role of tRNA-derived small RNAs (tsRNAs) in human diseases. Current study aimed to investigate the potential roles of tsRNAs in LN. Methods We herein employed high‐throughput sequencing to screen the expression profiles of tsRNAs in renal tissues of the LN and control groups. To validate the sequencing data, we performed quantitative real-time PCR (qRT-PCR) analysis. Correlational analysis of verified tsRNAs expression and clinical indicators was conducted using linear regression. The potential target genes were also predicted. The biological functions of tsRNAs were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Results Our findings revealed that the expression profiles of tsRNAs were significantly altered in the kidney tissues from LN patients compared with control. Overall, 160 tsRNAs were significantly dysregulated in the LN group, of which 79 were upregulated, whereas 81 were downregulated. Subsequent qRT-PCR results confirmed the different expression of candidate tsRNAs. Correlation analysis results found that expression of verified tsRNAs were correlated to clinical indicators. The target prediction results revealed that verified tsRNAs might act on 712 target genes. Further bioinformatics analysis uncovered tsRNAs might participate in the pathogenesis of LN through several associated pathways, including cell adhesion molecules, MAPK signaling pathway, PI3K-Akt signaling pathway and B cell receptor signaling pathway. Conclusion This study provides a novel insight for studying the mechanism of LN.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1173 ◽  
Author(s):  
Mailin Gan ◽  
Shunhua Zhang ◽  
Yuan Fan ◽  
Ya Tan ◽  
Zhixian Guo ◽  
...  

Cardiac hypertrophy is a common pathological condition and an independent risk factor that triggers cardiovascular morbidity. As an important epigenetic regulator, miRNA is widely involved in many biological processes. In this study, miRNAs expressed in rat hearts that underwent isoprenaline-induced cardiac hypertrophy were identified using high-throughput sequencing, and functional verification of typical miRNAs was performed using rat primary cardiomyocytes. A total of 623 miRNAs were identified, of which 33 were specifically expressed in cardiac hypertrophy rats. The enriched pathways of target genes of differentially expressed miRNAs included the FoxO signaling pathway, dopaminergic synapse, Wnt signaling pathway, MAPK (mitogen-activated protein kinase) signaling pathway, and Hippo signaling pathway. Subsequently, miR-144 was the most differentially expressed miRNA and was subsequently selected for in vitro validation. Inhibition of miR-144 expression in primary myocardial cells caused up-regulation of cardiac hypertrophy markers atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). The dual luciferase reporter system showed that ANP may be a target gene of miR-144. Long non-coding RNA myocardial infarction associated transcript (LncMIAT) is closely related to heart disease, and here, we were the first to discover that LncMIAT may act as an miR-144 sponge in isoproterenol-induced cardiac hypertrophy. Taken together, these results enriched the understanding of miRNA in regulating cardiac hypertrophy and provided a reference for preventing and treating cardiac hypertrophy.


2021 ◽  
Author(s):  
Xiaofen Pan ◽  
Xingkui Tang ◽  
Minling Liu ◽  
Xijun Luo ◽  
Mengyuan Zhu ◽  
...  

Abstract BackgroundTumor microenvironment consists of tumor cells, immune cells and other matric components. Tumor infiltration immune cells are associated with prognosis. But all the current prognosis evaluation system dose not take tumor immune cells other matrix component into consideration. In the current study, we aimed to construct a prognosis predictive model based on tumor microenvironment.MethodCIBERSORT and ESTIMATE algorithms were used to reveal the immune cell infiltration landscape of colon cancer. Patients were classified into three clusters by ConsensusClusterPlus algorithm. Immune cell infiltration (ICI) scores of each patient were determine by principal-component analysis. Patients were divided to high and low ICI score groups. Survival, gene expression and somatic mutation of the two groups were compared.ResultsPatients with no lymph node invasion, no metastasis, T1-2 disease and stage I-II had higher ICI scores. Calcium signaling pathway, leukocyte transendothelial migration pathway, MAPK signaling pathway, TGF β pathway, and WNT signaling pathway were enriched in high ICI score group. Immune-checkpoint genes and immune-activity associated genes were significantly decreased in high ICI score. Patients in high ICI score group had better survival than low ICI score group. Prognostic value of ICI score was independent of TMB.ConclusionICI score might serve as an independent prognostic biomarker in colon cancer.


2021 ◽  
Author(s):  
Huihui Gao ◽  
Heran Cao ◽  
Tianqi Jin ◽  
Guofan Peng ◽  
Yining Chen ◽  
...  

Abstract BackgroundSpermatogenesis is a highly complicated biological process that occurs in the epithelium of the seminiferous tubules. It is regulated by a complex network of endocrine and paracrine factors and juxtacrine testicular cross-talk . Sertoli cells (SCs) play a key role in spermatogenesis due to their production of trophic, differentiation and immune-modulating factors. However, many of the molecular pathways of SCs action remain controversial and unclear. Recently, research has focused on exosomes as an important mechanism of intercellular communication. ResultsW e found that the exosomes derived from SCs ( SC-Exos ) significantly inhibited the apoptosis of the primary spermatogonial stem cells (SSCs). Total of 1016 miRNAs in SCs and 556 miRNAs in SC-Exos were detected using microRNA (miRNA) high-throughput sequencing. Further, 294 miRNAs were differentially expressed between SCs and SC-Exos. Based on the GO and KEGG analyses, the target genes of 37 (high-expressed in exosomes and RPM>1000) selected miRNAs were involved in multiple biological pathw ays, including the MAPK signaling pathway and PI3K/AKT signaling pathway. And miR-10b is one of the top ten exosomes with relatively large enrichment of microRNA. In addition, the overexpression of miR-10b down-regulated expression of the target KLF4 to reduce spermatogonial apoptosis in SSCs or C18-4 cell line. ConclusionsThe study indicated a large number of small RNAs loaded in exosomes was secreted form the donor SCs to target spermatogonial regulated the apoptosis. And miR-10b inhibits the apoptosis of spermatogonia through the target gene KLF4.


2021 ◽  
Author(s):  
Shan Huang ◽  
Min Wei ◽  
Mengyuan Zhu ◽  
Xiaofen Pan

Abstract Background: Guanylate cyclase 1 soluble subunit alpha 2 (sGCα2), also known as GUCY1A2, was reported to be upregulated and promoted tumorigenesis in some cancers. But whether GUCY1A2 was abnormally expressed and the prognostic value in gastric cancer was unknown. The current study aimed to find out the prognostic value of GUCY1A2 in gastric cancer by analyzing data from The Cancer Genome Atlas (TCGA). Methods: Wilcoxon signed-rank test, cox regression analysis and multivariant analysis were used to analyze the relationship between clinical characteristic and GUCY1A2 expression level. Kaplan-Meier method was used to analyze the association of GUCY1A2 and overall survival. Gene set enrichment analysis (GSEA) was used to identify GUCY1A2-related signaling pathway. Results: Compared to normal tissue, expression of GUCY1A2 was significantly increased in gastric cancer (p=0.000). Increased GUCY1A2 was associated with advance T stage (p=0.012) and poor survival (p=0.022). Univariate analysis showed that high GUCY1A2 expression was associated with a poor overall survival (HR:1.44, 95% confidence interval [CI]: 1.03-2.02, p=0.03). Multivariate analysis indicated that GUCY1A3 remained an independent prognostic predictor of overall survival (HR:1.75, 95% confidence interval [CI]: 1.20-2.56, p=0.00). GSEA revealed that calcium signaling pathway, MAPK signaling pathway, TGF-β signaling pathway and Wnt signaling pathway were enriched in GUCY1A2 high expression phenotype. Conclusions: GUCY1A2 maybe a potential prognostic predictor of poor survival in gastric cancer. Calcium signaling pathway, MAPK signaling pathway, TGF-β signaling pathway and Wnt signaling pathway may be the key signaling pathway regulated by GUCY1A2.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lili Zhang ◽  
Wei Zhang ◽  
Hexin Li ◽  
Xiaokun Tang ◽  
Siyuan Xu ◽  
...  

Prostate cancer (PCa) is the most common malignant tumor in men, and its incidence increases with age. Serum prostate-specific antigen and tissue biopsy remain the standard for diagnosis of suspected PCa. However, these clinical indicators may lead to aggressive overtreatment in patients who have been treated sufficiently with active surveillance. Circular RNAs (circRNAs) have been recently recognized as a new type of regulatory RNA that is not easily degraded by RNases and other exonucleases because of their covalent closed cyclic structure. Thus, we utilized high-throughput sequencing data and bioinformatics analysis to identify specifically expressed circRNAs in PCa and filtered out five specific circRNAs for further analysis—hsa_circ_0006410, hsa_circ_0003970, hsa_circ_0006754, hsa_circ_0005848, and a novel circRNA, hsa_circ_AKAP7. We constructed a circRNA-miRNA regulatory network and used miRNA and differentially expressed mRNA interactions to predict the function of the selected circRNAs. Furthermore, survival analysis of their cognate genes and PCR verification of these five circRNAs revealed that they are closely related to well-known PCa pathways such as the MAPK signaling pathway, P53 pathway, androgen receptor signaling pathway, cell cycle, hormone-mediated signaling pathway, and cellular lipid metabolic process. By understanding the related metabolism of circRNAs, these circRNAs could act as metabolic biomarkers, and monitoring their levels could help diagnose PCa. Meanwhile, the exact regulatory mechanism for AR-related regulation in PCa is still unclear. The circRNAs we found can provide new solutions for research in this field.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhaoqin Wang ◽  
Yan Huang ◽  
Di Wang ◽  
Rumeng Wang ◽  
Kunshan Li ◽  
...  

Acupuncture and moxibustion have definite clinical effects on treating ulcerative colitis (UC), but their mechanism is still unclear. To investigate the molecular mechanisms, we applied herb-partitioned moxibustion or electroacupuncture at the Tianshu (ST25) points on UC rats and used RNA sequencing to identify molecular consequences. Male Sprague Dawley (SD) rats were divided into 6 groups randomly: the normal control (NC) group, the control + herb-partitioned moxibustion (NCHM) group, the control + electroacupuncture (NCEA) group, the model (UC) group, the model + herb-partitioned moxibustion (UCHM) group, and the model + electroacupuncture (UCEA) group. Compared to the UC group, HE staining in the UCHM group and UCEA group indicated that colitis was relieved, the histopathological score and MPO were both significantly reduced, and the serum hs-CRP concentration was decreased significantly. The results of RNA-seq suggested that, compared to the NC group, 206 upregulated genes and 167 downregulated genes were identified in colon tissues from the UC group; compared to the UC group, the expression levels of some genes were both affected in the UCHM group and the UCEA group (684 differentially expressed genes were identified in the UCHM group, and 1182 differentially expressed genes were identified in the UCEA group). KEGG signal pathway analysis indicated that the differentially expressed genes in the UCHM group were associated with the JAK-STAT signaling pathway and cell adhesion molecule (CAM); the differentially expressed genes in the UCEA group were associated with the NF-κB signaling pathway, the toll-like receptor signaling pathways, the PI3K-Akt signaling pathway, the MAPK signaling pathway, and the Wnt signaling pathway. This is the first study to reveal the gene expression characteristics of the anti-inflammatory effect of UC rats from the perspective of acupuncture and moxibustion control, which provide a clue for further investigation into the molecular mechanisms of UC treatment by acupuncture and moxibustion.


Sign in / Sign up

Export Citation Format

Share Document