scholarly journals Cell-Based Mechanosensation, Epigenetics, and Non-Coding RNAs in Progression of Cardiac Fibrosis

2019 ◽  
Vol 21 (1) ◽  
pp. 28 ◽  
Author(s):  
Silvia Ferrari ◽  
Maurizio Pesce

The heart is par excellence the ‘in-motion’ organ in the human body. Compelling evidence shows that, besides generating forces to ensure continuous blood supply (e.g., myocardial contractility) or withstanding passive forces generated by flow (e.g., shear stress on endocardium, myocardial wall strain, and compression strain at the level of cardiac valves), cells resident in the heart respond to mechanical cues with the activation of mechanically dependent molecular pathways. Cardiac stromal cells, most commonly named cardiac fibroblasts, are central in the pathologic evolution of the cardiovascular system. In their normal function, these cells translate mechanical cues into signals that are necessary to renew the tissues, e.g., by continuously rebuilding the extracellular matrix being subjected to mechanical stress. In the presence of tissue insults (e.g., ischemia), inflammatory cues, or modifiable/unmodifiable risk conditions, these mechanical signals may be ‘misinterpreted’ by cardiac fibroblasts, giving rise to pathology programming. In fact, these cells are subject to changing their phenotype from that of matrix renewing to that of matrix scarring cells—the so-called myo-fibroblasts—involved in cardiac fibrosis. The links between alterations in the abilities of cardiac fibroblasts to ‘sense’ mechanical cues and molecular pathology programming are still under investigation. On the other hand, various evidence suggests that cell mechanics may control stromal cells phenotype by modifying the epigenetic landscape, and this involves specific non-coding RNAs. In the present contribution, we will provide examples in support of this more integrated vision of cardiac fibrotic progression based on the decryption of mechanical cues in the context of epigenetic and non-coding RNA biology.

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Dongchao Lv ◽  
Yihua Bei ◽  
Qiulian Zhou ◽  
Qi Sun ◽  
Tianzhao Xu ◽  
...  

MicroRNAs (miRNAs, miRs), a novel group of small non-coding RNAs, play important roles in cardiac fibrosis. Exercise-induced physiological cardiac growth is associated with hypertrophy and proliferation of cardiomyocytes. In addition, exercise has been shown to inhibit cardiac fibrosis. However, relative little is known about whether exercise could attenuating cardiac fibrosis via targeting miRNA. miR-486 is a muscle enriched miRNAs, however, its role in heart is relative unclear. The current study aimed to investigate the role of miR-486 in exercise-induced cardiac growth in a 3-week swimming training murine model as well as in the function of cardiac fibroblasts and production of extracellular matrix (ECM) using neonatal rat cardiac fibroblasts in primary culture. Our data showed that exercised mice displayed increased about three-fold expression of miR-486 in hearts as measured by microarray analysis and qRT-PCRs. EdU proliferation assays demonstrated that miR-486 mimics decreased (5.90%±0.57% vs 4.02%±0.27% in nc-mimics vs miR-486-mimics, respectively), while miR-486 inhibitor increased the proliferation of cardiac fibroblasts in vitro (5.87%±0.16% vs 9.60%±0.58% in nc-inhibitor vs miR-486-inhibitor, respectively). Although downregulation of miR-486 had no regulatory effect on α-sma and collagen-1 gene expression in cardiac fibroblasts, overexpression of miR-486 significantly reduced the mRNA level of α-sma (1.01±0.08 vs 0.28±0.04 in nc-mimics vs miR-486-mimics, respectively) and collagen-1(1.02±0.12 vs 0.58±0.09 in nc-mimics vs miR-486-mimics, respectively), indicative of attenuated activation of fibroblasts and reduced production of ECM. These data reveal that miR-486 is essentially involved in the proliferation and activation of cardiac fibroblasts, and might be a key regulator mediating the benefit of exercise in preventing cardiac fibrosis.


2020 ◽  
Vol 11 ◽  
Author(s):  
Bihui Luo ◽  
Zhiyu He ◽  
Shijun Huang ◽  
Jinping Wang ◽  
Dunzheng Han ◽  
...  

Rationale: Cardiac fibrosis is observed in nearly every form of myocardial disease. Long non-coding RNAs (lncRNAs) have been shown to play an important role in cardiac fibrosis, but the detailed molecular mechanism remains unknown.Object: We aimed at characterizing lncRNA 554 expression in murine cardiac fibroblasts (CFs) after myocardial infarction (MI) to identify CF-enriched lncRNA and investigate its function and contribution to cardiac fibrosis and function.Methods and Results: In this study, we identified lncRNA NONMMUT022554 (lncRNA 554) as a regulator of MI-induced cardiac fibrosis. We found that lncRNA 554 was significantly up-regulated in the mouse hearts following MI. Further study showed that lncRNA 554 was predominantly expressed in cardiac fibroblasts, indicating a potential role of lncRNA 554 in cardiac fibrosis. In vitro knockdown of lncRNA 554 by siRNA suppressed fibroblasts migration and expression of extracellular matrix (ECM); while overexpression of lncRNA 554 promoted expression of ECM genes. Consistently, lentivirus mediated in vivo knockdown of lncRNA 554 could inhibit cardiac fibrosis and improve cardiac function in mouse model of MI. More importantly, TGF-β1 inhibitor (TEW-7197) could reverse the pro-fibrotic function of lncRNA 554 in CFs. This suggests that the effects of lncRNA 554 on cardiac fibrosis is TGF-β1 dependent.Conclusion: Collectively, our study illustrated the role of lncRNA 554 in cardiac fibrosis, suggested that lncRNA 554 might be a novel target for cardiac fibrosis.


2016 ◽  
Vol 96 (4) ◽  
pp. 1297-1325 ◽  
Author(s):  
Julia Beermann ◽  
Maria-Teresa Piccoli ◽  
Janika Viereck ◽  
Thomas Thum

Advances in RNA-sequencing techniques have led to the discovery of thousands of non-coding transcripts with unknown function. There are several types of non-coding linear RNAs such as microRNAs (miRNA) and long non-coding RNAs (lncRNA), as well as circular RNAs (circRNA) consisting of a closed continuous loop. This review guides the reader through important aspects of non-coding RNA biology. This includes their biogenesis, mode of actions, physiological function, as well as their role in the disease context (such as in cancer or the cardiovascular system). We specifically focus on non-coding RNAs as potential therapeutic targets and diagnostic biomarkers.


2022 ◽  
Vol 23 (2) ◽  
pp. 764
Author(s):  
Carlos García-Padilla ◽  
Ángel Dueñas ◽  
Virginio García-López ◽  
Amelia Aránega ◽  
Diego Franco ◽  
...  

Deep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis, primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples, tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epigenetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in several carcinomas.


2021 ◽  
Vol 22 (4) ◽  
pp. 1861
Author(s):  
Jemima Seidenberg ◽  
Mara Stellato ◽  
Amela Hukara ◽  
Burkhard Ludewig ◽  
Karin Klingel ◽  
...  

Background: Pathological activation of cardiac fibroblasts is a key step in development and progression of cardiac fibrosis and heart failure. This process has been associated with enhanced autophagocytosis, but molecular mechanisms remain largely unknown. Methods and Results: Immunohistochemical analysis of endomyocardial biopsies showed increased activation of autophagy in fibrotic hearts of patients with inflammatory cardiomyopathy. In vitro experiments using mouse and human cardiac fibroblasts confirmed that blockade of autophagy with Bafilomycin A1 inhibited fibroblast-to-myofibroblast transition induced by transforming growth factor (TGF)-β. Next, we observed that cardiac fibroblasts obtained from mice overexpressing transcription factor Fos-related antigen 2 (Fosl-2tg) expressed elevated protein levels of autophagy markers: the lipid modified form of microtubule-associated protein 1A/1B-light chain 3B (LC3BII), Beclin-1 and autophagy related 5 (Atg5). In complementary experiments, silencing of Fosl-2 with antisense GapmeR oligonucleotides suppressed production of type I collagen, myofibroblast marker alpha smooth muscle actin and autophagy marker Beclin-1 in cardiac fibroblasts. On the other hand, silencing of either LC3B or Beclin-1 reduced Fosl-2 levels in TGF-β-activated, but not in unstimulated cells. Using a cardiac hypertrophy model induced by continuous infusion of angiotensin II with osmotic minipumps, we confirmed that mice lacking either Fosl-2 (Ccl19CreFosl2flox/flox) or Atg5 (Ccl19CreAtg5flox/flox) in stromal cells were protected from cardiac fibrosis. Conclusion: Our findings demonstrate that Fosl-2 regulates autophagocytosis and the TGF-β-Fosl-2-autophagy axis controls differentiation of cardiac fibroblasts. These data provide a new insight for the development of pharmaceutical targets in cardiac fibrosis.


Author(s):  
Rebeca Oliveira Camargo ◽  
Besher Abual'anaz ◽  
Sunil G. Rattan ◽  
Krista L. Filomeno ◽  
Ian M. C. Dixon

2021 ◽  
Vol 399 (2) ◽  
pp. 112464
Author(s):  
Peng Shi ◽  
Xu-Dong Zhao ◽  
Kai-Hu Shi ◽  
Xuan-Sheng Ding ◽  
Hui Tao

2012 ◽  
Vol 40 (4) ◽  
pp. 836-841 ◽  
Author(s):  
Jonathan Houseley

Unstable non-coding RNAs are produced from thousands of loci in all studied eukaryotes (and also prokaryotes), but remain of largely unknown function. The present review summarizes the mechanisms of eukaryotic non-coding RNA degradation and highlights recent findings regarding function. The focus is primarily on budding yeast where the bulk of this research has been performed, but includes results from higher eukaryotes where available.


Author(s):  
Chuan-yi Hu ◽  
Juan Chen ◽  
Xin-hua Qin ◽  
Pan You ◽  
Jie Ma ◽  
...  

Abstract Background Bone metastasis is the leading cause of mortality and reduced quality of life in patients with metastatic prostate cancer (PCa). Long non-coding RNA activated by DNA damage (NORAD) has been observed to have an abnormal expression in various cancers. This article aimed to explore the molecular mechanism underlying the regulatory role of NORAD in bone metastasis of PCa. Methods NORAD expression in clinical PCa tissues and cell lines was detected with the application of qRT-PCR. Cancer cells were then transfected with plasmids expressing NORAD, after which Transwell assay and CCK-8 assay were carried out to detect proliferation, migration, and bone metastasis of PCa. NORAD downstream target molecules were screened through bioinformatics analysis, followed by further verification using dual luciferase assay. Extracellular vesicles (EVs) were labeled with PKH67 and interacted with bone marrow stromal cells. The gain- and loss-function method was applied to determine the internalization and secretion of PCa cells-derived EVs under the intervention of downstream target molecules or NORAD. Results PCa tissues and cell lines were observed to have a high expression of NORAD, particularly in tissues with bone metastasis. NORAD knockdown resulted in reduced secretion and internalization of EVs, and suppressed proliferation, migration, and bone metastasis of PCa cells. It was indicated that NORAD interacted with miR-541-3p, leading to the upregulation of PKM2. Forced expression of PKM2 promoted the transfer of PKH67-labeled EVs to bone marrow stromal cells. Conclusions NORAD might serve as a ceRNA of miR-541-3p to promote PKM2 expression, thereby enhancing the development of bone metastasis in PCa by promoting internalization and transfer of EVs of cancer cells, providing an insight into a novel treatment for the disorder.


Sign in / Sign up

Export Citation Format

Share Document