scholarly journals Simple Exact Algorithm for Transistor Sizing of Low-Power High-Speed Arithmetic Circuits

VLSI Design ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Tooraj Nikoubin ◽  
Poona Bahrebar ◽  
Sara Pouri ◽  
Keivan Navi ◽  
Vaez Iravani

A new transistor sizing algorithm, SEA (Simple Exact Algorithm), for optimizing low-power and high-speed arithmetic integrated circuits is proposed. In comparison with other transistor sizing algorithms, simplicity, accuracy, independency of order and initial sizing factors of transistors, and flexibility in choosing the optimization parameters such as power consumption, delay, Power-Delay Product (PDP), chip area or the combination of them are considered as the advantages of this new algorithm. More exhaustive rules of grouping transistors are the main trait of our algorithm. Hence, the SEA algorithm dominates some major transistor sizing metrics such as optimization rate, simulation speed, and reliability. According to approximate comparison of the SEA algorithm with MDE and ADC for a number of conventional full adder circuits, delay and PDP have been improved 55.01% and 57.92% on an average, respectively. By comparing the SEA and Chang's algorithm, 25.64% improvement in PDP and 33.16% improvement in delay have been achieved. All the simulations have been performed with 0.13 m technology based on the BSIM3v3 model using HSpice simulator software.

Author(s):  
Sai Venkatramana Prasada G.S ◽  
G. Seshikala ◽  
S. Niranjana

Background: This paper presents the comparative study of power dissipation, delay and power delay product (PDP) of different full adders and multiplier designs. Methods: Full adder is the fundamental operation for any processors, DSP architectures and VLSI systems. Here ten different full adder structures were analyzed for their best performance using a Mentor Graphics tool with 180nm technology. Results: From the analysis result high performance full adder is extracted for further higher level designs. 8T full adder exhibits high speed, low power delay and low power delay product and hence it is considered to construct four different multiplier designs, such as Array multiplier, Baugh Wooley multiplier, Braun multiplier and Wallace Tree multiplier. These different structures of multipliers were designed using 8T full adder and simulated using Mentor Graphics tool in a constant W/L aspect ratio. Conclusion: From the analysis, it is concluded that Wallace Tree multiplier is the high speed multiplier but dissipates comparatively high power. Baugh Wooley multiplier dissipates less power but exhibits more time delay and low PDP.


Author(s):  
Soniya Nuthalapati ◽  
Ranjitha P.V.Sai ◽  
Radhika Rani Kalapala ◽  
Lourdu Sasi Rekha Lingisetty ◽  
Sirisha Mekala ◽  
...  

This literature illustrates the high speed and low power Full Adder (FADD) designs. This study relates to the composited structure of FADD design composed in one unit. In this the EXCL-OR/EXCL-NOR designs are used to design the FADD. Mostly concentrates on high speed standard FADD structure by combining the EXCL-OR/EXCL-NOR design in single unit. We implemented two composite structures of FADD through the full swing EXCL-OR/EXCL-NOR designs. And the EXCL-OR/EXCL-NOR design is done through pass transistor logic (PTL) and the same design projected on the composited FADD design. Such that the delay, area of the design, power requirement for the circuit gets optimized. The two composited FADD designs are compared and reduced the constraints of power requirement, area, delay and the power delay product (PDP). The simulated outcomes are verified through 130nnm CMOS mentor graphics tool.


2012 ◽  
Vol 21 (05) ◽  
pp. 1250042 ◽  
Author(s):  
MAHDIAR GHADIRY ◽  
MAHDIEH NADI ◽  
HOSEIN MOHAMMADI ◽  
ASRULNIZAM BIN ABD MANAF

A novel low power-delay product full adder circuit is presented in this paper. A new approach is used in order to design full-swing full adder with low number of transistors. The proposed full adder is implemented in MOSFET-like Carbon nanotube technology and the layout is provided based on standard 32 nm technology from MOSIS. The simulation results using HSPICE show that, there are substantial improvements in both power and performance of the proposed circuit compared to latest designs. In addition, the proposed circuit has been implemented in conventional 32 nm process to estimate the advantages of using carbon-based transistors in digital designs over conventional silicon technology. The proposed circuit can be applied in ultra low power and very high speed applications.


2021 ◽  
Vol 11 (1) ◽  
pp. 429
Author(s):  
Min-Su Kim ◽  
Youngoo Yang ◽  
Hyungmo Koo ◽  
Hansik Oh

To improve the performance of analog, RF, and digital integrated circuits, the cutting-edge advanced CMOS technology has been widely utilized. We successfully designed and implemented a high-speed and low-power serial-to-parallel (S2P) converter for 5G applications based on the 28 nm CMOS technology. It can update data easily and quickly using the proposed address allocation method. To verify the performances, an embedded system (NI-FPGA) for fast clock generation on the evaluation board level was also used. The proposed S2P converter circuit shows extremely low power consumption of 28.1 uW at 0.91 V with a core die area of 60 × 60 μm2 and operates successfully over a wide clock frequency range from 5 M to 40 MHz.


2012 ◽  
Vol 9 (24) ◽  
pp. 1900-1905
Author(s):  
Kamran Delfan Hemmati ◽  
Mojtaba Behzad Fallahpour ◽  
Abbas Golmakani ◽  
Kamyar Delfan Hemmati

Author(s):  
Tejaswini M. L ◽  
Aishwarya H ◽  
Akhila M ◽  
B. G. Manasa

The main aim of our work is to achieve low power, high speed design goals. The proposed hybrid adder is designed to meet the requirements of high output swing and minimum power. Performance of hybrid FA in terms of delay, power, and driving capability is largely dependent on the performance of XOR-XNOR circuit. In hybrid FAs maximum power is consumed by XOR-XNOR circuit. In this paper 10T XOR-XNOR is proposed, which provide good driving capabilities and full swing output simultaneously without using any external inverter. The performance of the proposed circuit is measured by simulating it in cadence virtuoso environment using 90-nm CMOS technology. This circuit outperforms its counterparts showing power delay product is reduced than that of available XOR-XNOR modules. Four different full adder designs are proposed utilizing 10T XOR-XNOR, sum and carry modules. The proposed FAs provide improvement in terms of PDP than that of other architectures. To evaluate the performance of proposed full adder circuit, we embedded it in a 4-bit and 8-bit cascaded full adder. Among all FAs two of the proposed FAs provide the best performance for a higher number of bits.


VLSI technology become one of the most significant and demandable because of the characteristics like device portability, device size, large amount of features, expenditure, consistency, rapidity and many others. Multipliers and Adders place an important role in various digital systems such as computers, process controllers and signal processors in order to achieve high speed and low power. Two input XOR/XNOR gate and 2:1 multiplexer modules are used to design the Hybrid Full adders. The XOR/XNOR gate is the key punter of power included in the Full adder cell. However this circuit increases the delay, area and critical path delay. Hence, the optimum design of the XOR/XNOR is required to reduce the power consumption of the Full adder Cell. So a 6 New Hybrid Full adder circuits are proposed based on the Novel Full-Swing XOR/XNOR gates and a New Gate Diffusion Input (GDI) design of Full adder with high-swing outputs. The speed, power consumption, power delay product and driving capability are the merits of the each proposed circuits. This circuit simulation was carried used cadence virtuoso EDA tool. The simulation results based on the 90nm CMOS process technology model.


Author(s):  
Woo Wei Kai ◽  
Nabihah Ahmad ◽  
Mohamad Hairol Jabbar

In digital system, the full adders are fundamental circuits that are used for arithmetic operations. Adder operation can be used to implement and perform calculation of the multipliers, subtraction, comparators, and address operation in an Arithmetic Logic Unit (ALU). The subthreshold leakage current increasing as proportional with the scaling down of oxide thickness and transistor in short channel sizes. In this paper, a Gate-diffusion Input (GDI) circuit design technique allow minimization the number of transistor while maintaining low complexity of logic design and low power realization of Variable Body Biasing (VBB) technique to reduce the static power consumption. The Silterra 90nm process design kit (PDK) was used to design 8-bit full adder with VBB technique in full custom methodology by using Synopsys Electronic Design Automation (EDA) tools. The simulation of 8-bit full adder was compared within a conventional bias technique and VBB technique with operating voltage of  supply. The result showed the reduction of VBB technique in term of peak power,  and average power,   compare with conventional bias technique. Moreover, the Power Delay Product (PDP) showed 1.29pJ in VBB technique compare with conventional bias mode 1.67pJ. The area size of 8-Bit full adder was 10μm×23μm.


Sign in / Sign up

Export Citation Format

Share Document