scholarly journals Nanoprodrugs of NSAIDs Inhibit the Growth of U87-MG Glioma Cells

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Bong-Seop Lee ◽  
Xiangpeng Yuan ◽  
Qijin Xu ◽  
Minhee K. Ko ◽  
Aruna K. Nalla ◽  
...  

Several recent reports have demonstrated that nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit the growth of various malignant cells suggesting their application as anticancer agents. In this study, we prepared six nanometer-sized prodrugs (nanoprodrugs) of NSAIDs, ibuprofen, indomethacin, and naproxen through the spontaneous emulsification mechanism using monomeric and dimeric derivatives of the NSAIDs. We evaluated their effect on the proliferation of U87-MG glioma cells by cell counting, WST-1 cell proliferation reagent, and propidium iodide incorporation. The two ibuprofen nanoprodrugs inhibited the cell growth more potently than the indomethacin nanoprodrugs, whereas the naproxen nanoprodrugs did not show any significant effect. Remarkably, ibuprofen did not show any effect at an equimolar concentration. Approximately, 4.4% of the ibuprofen nanoprodrugs was found in the cell, whereas no ibuprofen could be detected suggesting that the superior effect of the nanoprodrugs can be attributed to the efficient cellular uptake of the nanoprodrugs.

2021 ◽  
Author(s):  
Jiamin Ding ◽  
Zuoliang Chen ◽  
Wanlu Chen ◽  
Zhongxiong Ma ◽  
Yunde Xie ◽  
...  

Abstract Background: Qilan preparation, a complex Chinese herbal medicine consisting of ingredients extracted from Radix Astragali, Gynostemma Pentaphyllum, Rhizoma Chuanxiong and selenium- rich green tea and known for ‘fortifying the spleen and boosting qi, quickening the blood and transforming stasis, and resolving toxins and relieving pain, is used for the prevention and management of oral diseases. The aim of this study was to examine the antitumor effects of Qilan preparation on oral squamous cell carcinoma (OSCC) in vitro and to explore its underlying mechanisms of action. Methods: Human Tca8113 tongue squamous cell carcinoma (TSCC) cells were tested. Cell proliferation, cell cycle distribution and apoptosis were examined using cell counting kit-8 (CCK8) and flow cytometry (FCM). The expression of PTEN and PDCD4 were determined by western blot. Changes in miR-21 levels were quantified using TaqMan stem-loop real-time PCR. After miR-21 was transiently transfected into Tca8113 cells using Lipofectamine®3000, cell proliferation, apoptosis and miR-21 and PDCD4 expression levels were measured.Results: Qilan preparation inhibited Tca8113 cell growth in a dose- and time-dependent manner by inducing apoptosis and cell cycle arrest in S-phase, decreasing miR-21 levels and increasing PTEN and PDCD4 expression. MiR-21 overexpression reversed the Qilan preparation-induced suppression of cell proliferation and induction of apoptosis while also blocking the increase in PDCD4.Conclusions: Our study revealed, for the first time, the ability of Qilan preparation to suppress TSCC cell growth and elucidated that Qilan preparation elicits its anti-cancer actions via either the miR-21/PDCD4 or PTEN pathway.


Author(s):  
Nisha Jain ◽  
Divya Utreja ◽  
Komalpreet Kaur ◽  
Palak Jain

Background: Cancer has become the second leading cause of death worldwide. Despite of the availability of significant number of anticancer agents, cancer is still incurable especially at the last stages. Remarkable targets for anticancer research and drug discovery are heterocyclic compounds and among them superior effect has been shown by the nitrogen containing compounds than non-nitrogen containing compounds. Nicotinic acid, a nitrogen containing moiety and its derivatives have gained an immense importance in the development of anticancer drugs owing to the wide variety of biological properties displayed by them. Objective: The objective of this review is to provide researchers the information about various synthetic approaches used for the synthesis of anticancer drugs of nicotinic acid from 2001 onwards and to reveal their application and importance in the treatment of this dreadful disease. Conclusion: As indicated by this review, considerable work has been done in terms of synthesis and investigation of anticancer potential of nicotinamide derivatives. The information provided in this article may be of great value for the researchers seeking to develop efficient anticancer drugs.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2528-2528
Author(s):  
Sherine F. Elsawa ◽  
Anne J. Novak ◽  
Marina Konopleva ◽  
Michael Andreeff ◽  
Thomas E. Witzig ◽  
...  

Waldenström macroglobulinemia (WM) is a B cell disorder with a highly variable clinical outcome, where some patients remain asymptomatic, while others have significant symptoms and require therapeutic intervention. Clinical symptoms include infiltration of lymphoplasmacytic cells into the bone marrow, production of a monoclonal IgM protein, anemia, lymphadenopathy, and serum hyperviscosity. Despite the introduction of multiple chemotherapeutic regimens over the past several decades, WM remains an incurable disease. 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO) and its methyl ester derivative (CDDO-Me) and imidazolide derivative (CDDO-Im) are synthetic triterpenoids derived from oleanolic acid. These compounds have been shown to induce apoptosis of several tumor cell types including breast cancer, lung cancer, ovarian cancer, melanoma, osteosarcoma, leukemia, and multiple myeloma cells. The goal of this study was to evaluate the potential role of synthetic triterpenoids in WM. Preliminary studies on malignant B cells indicated that CDDO-Im induced the greatest amount of cell death and we therefore used this derivative of CDDO for our studies. CD19+ CD138+ cells from bone marrow biopsy specimens obtained from WM patients were isolated by positive selection and were treated with varying concentrations of CDDO-Im (62.5 nM to 750 nM ) and cell viability was determined after 24 hours (n=3). Compared to the nil control 47% of the malignant cells remained viable at a CDDO-Im concentration of 62.5 nM and only 11% remained viable at 125 nM CDDO-Im. To determine if CDDO-Im had specific toxic effects on non-malignant cells, we cultured CD19- CD138- cells from WM patient bone marrows with CDDO-Im and found that non-malignant cells were less sensitive to the drug, 80% being viable at 62.5 nM and 65% being viable at 125 nM. Similarly, we found that normal peripheral blood B cells and CD19+ CD138+ bone marrow B cells from healthy donors were less sensitive to CDDO-Im. Compared to the nil control 93% of the CD19+ CD138+ bone marrow B cells and 70% of the peripheral blood B cells remained viable at a CDDO-Im concentration of 62.5 nM and 95% and 68% remained viable at 125 nM CDDO-Im respectively. We next examined the effect of CDDO-Im on WM cell proliferation and found that CDDO-Im inhibited cell proliferation in a dose-dependent manner. Similar to the viability assays, there was a differential effect of CDDO-Im on malignant and non-malignant cells. Compared to the nil control, at 125 nM, there was a complete inhibition of malignant cell growth, while approximately 40% of the non-malignant cells remained proliferative. To determine the mechanism of cell death, CD19+ CD138+ cells were cultured in the presence or absence of various doses of CDDO-Im for 6 hours and cell lysates were examined for cleavage of PARP. There was evidence of PARP cleavage in a dose-dependent manner, suggesting that CDDO-Im induced malignant cell death occurs through a caspase-dependent mechanism. In summary, the synthetic triterpenoid CDDO-Im decreased the viability of WM B cells in a dose-dependent manner, and CDDO-Im had a greater effect on the viability of the malignant cells compared to non-malignant cells from the same WM patients. CDDO-Im also inhibited malignant cell growth in a dose-dependent manner and the mechanism of CDDO-Im mediated cell death appears to be a caspase-mediated event. Overall, our data indicate that CDDO-Im may have potential efficacy in WM patients.


2018 ◽  
Vol 46 (4) ◽  
pp. 1525-1535 ◽  
Author(s):  
Cheng-cheng Liu ◽  
Hua Wang ◽  
Wei-da Wang ◽  
Liang Wang ◽  
Wen-jian Liu ◽  
...  

Background/Aims: The metabolic features of cancer cells have long been acknowledged to be altered and to provide new therapeutic opportunities. The expression of glycolytic enzyme enolase 2 (ENO2) was found to be closely associated with the clinical features of acute lymphoblastic leukemia (ALL) patients, but its functions remain unclear in ALL. Methods: We evaluated the association between ENO2 mRNA expression in bone marrow mononuclear cells (BM-MNCs) and the efficacy of chemotherapy, and further explored the function of ENO2 in ALL. The molecular mechanisms of ENO2 expression and its effects on cell growth, glycolysis and glucocorticoid resistance were explored by Cell Counting Kit-8, glucose-consumption assay, Quantitative RT-PCR, Western blotting and in vivo tumorigenesis in NOD/SCID mice. Results: The results showed that ENO2 mRNA expression in BM-MNCs was significantly decreased when patients completed induction chemotherapy and reached complete remission (CR). ENO2 mRNA expression was increased when patients suffered relapse. Functional studies demonstrated that ENO2 promoted cell growth, glycolysis, and glucocorticoid resistance, all of which were effectively inhibited when ENO2 was silenced with shRNAs. Further studies revealed that ENO2 up-regulated various glycolysis-related genes and enhanced Akt activity with subsequent glycogen synthase kinase3β (GSK-3β) phosphorylation, inducing cell proliferation and glycolysis. The combination of silencing ENO2 and 2-deoxyglucose (2-DG) synergistically inhibited leukemia cell survival. Conclusions: These results indicate that ENO2 may be a biological marker for monitoring chemotherapeutic efficacy and relapse in ALL. ENO2 may provide a potential therapeutic strategy for ALL.


Author(s):  
Chong Li ◽  
Shiyu Feng ◽  
Ling Chen

Abstract Long non-coding RNAs (lncRNAs) have been widely reported to regulate the development and chemoresistance of a variety of tumors. Temozolomide (TMZ) is a first-line chemotherapy for treatment of glioma. However, the effect and the regulatory mechanism of lncRNA MSC-AS1 (MSC-AS1) in TMZ-resistant glioma remain unrevealed. Levels of MSC-AS1, microRNA-373-3p (miR-373-3p), and cytoplasmic polyadenylation element binding protein 4 (CPEB4) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). All protein expression was detected by western blot. Cell viability and the half maximal inhibitory concentration (IC50) value of TMZ was assessed by cell counting kit-8 (CCK-8) assay. Cell cloning ability and apoptosis were examined by colony formation and flow cytometry assays, respectively. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to verify the correlation between miR-373-3p and MSC-AS1 or CPEB4. The xenograft models were established to determine the effect of MSC-AS1 in vivo. MSC-AS1 was up-regulated in TMZ-resistant glioma tissues and cells, and glioma patients with high MSC-AS1 expression tend to have lower overall survival rate. MSC-AS1 suppression reduced the IC50 value of TMZ and proliferation, promoted apoptosis and TMZ sensitivity, and affected PI3K/Akt pathway in TMZ-resistant glioma cells. MSC-AS1 acted as miR-373-3p sponge, and miR-373-3p directly targeted CPEB4. Silencing miR-373-3p reversed the promoting effect of MSC-AS1 or CPEB4 knockdown on TMZ sensitivity. Furthermore, MSC-AS1 knockdown inhibited TMZ-resistant glioma growth in vivo by regulating miR-373-3p/CPEB4 axis through PI3K/Akt pathway. Collectively, MSC-AS1 knockdown suppressed cell growth and the chemoresistance of glioma cells to TMZ by regulating miR-373-3p/CPEB4 axis in vitro and in vivo through activating PI3K/Akt pathway.


2021 ◽  
Author(s):  
Jing Ding ◽  
Xiaolei Liu ◽  
Bin Tang ◽  
Xue Bai ◽  
Yang Wang ◽  
...  

Abstract Background Although Trichinella spiralis (T. spiralis) causes zoonotic diseases, it has a strong immunomodulatory effect and has therapeutic potential for various autoimmune diseases and cancers. Our previous study results showed that T. spiralis infection can inhibit the growth of liver cancer cells, but the specific mechanism has not been elucidated. Methods BALB/c mice injected with H22 cells and then infected with T. spiralis were used to detect tumor inhibition rate. Cell proliferation and apoptosis of H22 cells treated with excretory-secretory product (ESP) were measured by Cell-Counting Kit 8 (CCK-8) and Flow Cytometry (FCM). The expression of apoptosis-related genes in H22 cells and tumor tissues was detected by western blotting and real-time quantitative PCR (qPCR). IL-2, IFN-γ and IL-4 production in the spleens were measured by qPCR and enzyme-linked immunosorbent assay(ELISA). Results The growth of tumors in tumor model mice infected with T. spiralis was significantly inhibited compared with those uninfected tumor model mice. ESP could inhibit H22 cell proliferation and induce apoptosis through the mitochondrial pathway both in vitro and in vivo. Additionally, the levels of Th1 cytokines with antitumor effects were significantly increased in the early stage of T. spiralis infection, while Th2 cytokines increased later than Th1 cytokines. Conclusions ESP can directly induce tumor cell apoptosis and indirectly inhibit tumor cell growth through the host immune system, which is the potential antitumor mechanism of T. spiralis infection.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Xuee Luo ◽  
Ning Zhou ◽  
Le Wang ◽  
Qinghua Zeng ◽  
Hongying Tang

Background. Long noncoding RNAs (lncRNAs) have been known to play important roles in the progression of various types of human cancer. LncRNA GATA3 antisense RNA 1, GATA3-AS1, has been reported to be associated with T-cell development and differentiation. However, the expression pattern and function of GATA3-AS1 in hepatocellular carcinoma (HCC) remain unknown. Methods. Real-time quantitative PCR (RT-qPCR) assay was conducted to detect GATA3-AS1 expression levels in 80 cases of pairs HCC tissues and matched normal tissues. Chi-squared (χ2) test was used to analyze the correlation between GATA3-AS1 expression and clinicopathologic variables. Survival curves were plotted using the Kaplan–Meier method and were compared via the log-rank test. The cell counting kit-8 (CCK-8) and wound scratch assays were applied to detect the effect of GATA3-AS1 knockdown and overexpression on cell growth and migration of HCC. RT-qPCR was performed for the detection of the phosphatase and tensin homolog (PTEN), cyclin-dependent kinase inhibitor 1A (CDKN1A), and tumor protein p53 (TP53) expression in HCC cells after GATA3-AS1 knockdown and overexpression. Results. GATA3-AS1 was significantly upregulated in HCC tissues compared with matched normal tissues. The high expression of GATA3-AS1 was significantly correlated with larger tumor size, advanced TNM stage, and more lymph node metastasis. High GATA3-AS1 expression was markedly correlated with shorter overall survival times of HCC patients. Furthermore, knockdown of GATA3-AS1 obviously inhibited Hep3B and HCCLM3 cell growth and migration, whereas overexpression of GATA3-AS1 had the opposite effects. In addition, GATA3-AS1 knockdown resulted in upregulated expression levels of tumor-suppressive genes, PTEN, CDKN1A, and TP53, in Hep3B and HCCLM3 cells, while restoration of GATA3-AS1 decreased PTEN, CDKN1A, and TP53 expression levels. Conclusion. Our data suggested that GATA3-AS1 promotes cell proliferation and metastasis of HCC by suppression of PTEN, CDKN1A, and TP53.


2018 ◽  
Vol 48 (2) ◽  
pp. 450-460 ◽  
Author(s):  
Nai-yuan Shao ◽  
Dong-xing Wang ◽  
Yin Wang ◽  
Ya Li ◽  
Zhi-qing Zhang ◽  
...  

Background/Aims: Glioma causes significant human mortalities annually. Molecularly-targeted therapy is a focus of glioma research. Methods: Grb2-associated binding 1 (Gab1) expression and microRNA-29a-3p (“miR-29a-3p”) expression in human glioma cells and tissues were tested by Western blotting assay and qRT-PCR assay. shRNA/siRNA strategy was applied to silence Gab1 in human glioma cells. miR-29a or anti-sense miR-29a construct was transfected to human glioma cells. Cell proliferation was tested by BrdU ELISA assay and cell counting assay. Results: We show that expression of Gab1 was significantly elevated in human glioma tissues and cells, which correlated with downregulation of its putative microRNA: miR-29a-3p. In A172 glioma cells and primary human glioma cells, Gab1 shRNA/siRNA inhibited Akt-Erk activation and cell proliferation. Forced-expression of miR-29a-3p downregulated Gab1, inhibiting glioma cell proliferation, whereas miR-29a-3p was in-effective on cell proliferation in Gab1-silenced A172 cells. Furthermore, introduction of a 3’-untranslated region (3’-UTR) mutant Gab1 (UTR-G160A) blocked miR-29a-3p-induced inhibition on Akt signaling and A172 cell proliferation. Conclusions: miR-29a-3p downregulation leads to Gab1 upregulation to promote glioma cell proliferation.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Karim El-Kouhen ◽  
Jean Morisset

With the exclusive presence of the pancreatic CCK-2 receptors on the pancreatic delta cells of six different species, this study was undertaken to determine the role of cholecystokinin and gastrin on growth of these somatostatin (SS) cells. For this study, the SS-RIN-14B cells were used in culture and their growth was evaluated by cell counting.Results. To our surprise, we established by Western blot that these RIN cells possess the two CCK receptor subtypes, CCK-1 and CCK-2. Occupation of the CCK-1 receptors by caerulein, a CCK analog, led to inhibition of cell proliferation, an effect prevented by a specific CCK-1 receptor antagonist. Occupation of the CCK-2 receptors by the gastrin agonist pentagastrin had no effect on cell growth. Proliferation was not affected by SS released from these cells but was inhibited by exogenous SS.Conclusions. Growth of the SS-RIN-14B cells can be negatively affected by occupation of their CCK-1 receptors and by exogenous somatostatin.


Author(s):  
Alex Shimura Yamashita ◽  
Marina da Costa Rosa ◽  
Vittorio Stumpo ◽  
Rana Rais ◽  
Barbara S Slusher ◽  
...  

Abstract Background Metabolism reprogramming is a common feature in cancer, and it is critical to facilitate cancer cell growth. Isocitrate Dehydrogenase 1/2 (IDH1 & IDH2) mutations (IDHmut) are the most common genetic alteration in glioma grade II and III and secondary glioblastoma and these mutations increase reliance on glutamine metabolism, suggesting a potential vulnerability. In this study, we tested the hypothesis that the brain penetrant glutamine antagonist prodrug JHU-083 reduces glioma cell growth. Material and Methods We performed cell growth, cell cycle, and protein expression in glutamine deprived or Glutaminase (GLS) gene silenced glioma cells. We tested the effect of JHU-083 on cell proliferation, metabolism, and mTOR signaling in cancer cell lines. An orthotopic IDH1R132H glioma model was used to test the efficacy of JHU-083 in vivo. Results Glutamine deprivation and GLS gene silencing reduced glioma cell proliferation in vitro in glioma cells. JHU-083 reduced glioma cell growth in vitro, modulated cell metabolism, and disrupted mTOR signaling and downregulated Cyclin D1 protein expression, through a mechanism independent of TSC2 modulation and glutaminolysis. IDH1R132H isogenic cells preferentially reduced cell growth and mTOR signaling downregulation. In addition, guanine supplementation partially rescued IDHmut glioma cell growth, mTOR signaling, and Cyclin D1 protein expression in vitro. Finally, JHU-083 extended survival in an intracranial IDH1mut glioma model and reduced intracranial pS6 protein expression. Conclusion Targeting glutamine metabolism with JHU-083 showed efficacy in preclinical models of IDHmut glioma and measurably decreased mTOR signaling.


Sign in / Sign up

Export Citation Format

Share Document