scholarly journals Bioactive Food Components and Cancer-Specific Metabonomic Profiles

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Young S. Kim ◽  
John A. Milner

Cancer cells possess unique metabolic signatures compared to normal cells, including shifts in aerobic glycolysis, glutaminolysis, andde novobiosynthesis of macromolecules. Targeting these changes with agents (drugs and dietary components) has been employed as strategies to reduce the complications associated with tumorigenesis. This paper highlights the ability of several food components to suppress tumor-specific metabolic pathways, including increased expression of glucose transporters, oncogenic tyrosine kinase, tumor-specific M2-type pyruvate kinase, and fatty acid synthase, and the detection of such effects using various metabonomic technologies, including liquid chromatography/mass spectrometry (LC/MS) and stable isotope-labeled MS. Stable isotope-mediated tracing technologies offer exciting opportunities for defining specific target(s) for food components. Exposures, especially during the early transition phase from normal to cancer, are critical for the translation of knowledge about food components into effective prevention strategies. Although appropriate dietary exposures needed to alter cellular metabolism remain inconsistent and/or ill-defined, validated metabonomic biomarkers for dietary components hold promise for establishing effective strategies for cancer prevention.

Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3157
Author(s):  
Hammad Ullah ◽  
Anna De Filippis ◽  
Alessandra Baldi ◽  
Marco Dacrema ◽  
Cristina Esposito ◽  
...  

The pivotal role of childhood nutrition has always roused a growing interest from the scientific community. Plant extracts and bioactive dietary components play a significant role in the maintenance of human health and wellness, with the potential to modulate risk factors and manage symptoms for a large number of common childhood disorders such as memory impairment, respiratory illnesses, gastrointestinal disorders, metabolic derangements, and pathologies related to the oral cavity. This review is designed to highlight the health benefits of botanical extracts and bioactive dietary components in children as evidenced by clinical trials, considering their safety with regards to childhood sensibilities. The supplementation of children with the herbal extracts or bioactive components mentioned in this review leads to the conclusion that they are useful for treating various ailments, with no serious adverse events being reported. However, for the limited number of investigations specifically focused on the safety of such products in children, time is needed to expand the literature data covering the safety of childhood supplementation with botanical extract and bioactive food components.


2019 ◽  
Vol 19 (17) ◽  
pp. 1521-1534 ◽  
Author(s):  
Anatoly Sorokin ◽  
Vsevolod Shurkhay ◽  
Stanislav Pekov ◽  
Evgeny Zhvansky ◽  
Daniil Ivanov ◽  
...  

Cells metabolism alteration is the new hallmark of cancer, as well as an important method for carcinogenesis investigation. It is well known that the malignant cells switch to aerobic glycolysis pathway occurring also in healthy proliferating cells. Recently, it was shown that in malignant cells de novo synthesis of the intracellular fatty acid replaces dietary fatty acids which change the lipid composition of cancer cells noticeably. These alterations in energy metabolism and structural lipid production explain the high proliferation rate of malignant tissues. However, metabolic reprogramming affects not only lipid metabolism but many of the metabolic pathways in the cell. 2-hydroxyglutarate was considered as cancer cell biomarker and its presence is associated with oxidative stress influencing the mitochondria functions. Among the variety of metabolite detection methods, mass spectrometry stands out as the most effective method for simultaneous identification and quantification of the metabolites. As the metabolic reprogramming is tightly connected with epigenetics and signaling modifications, the evaluation of metabolite alterations in cells is a promising approach to investigate the carcinogenesis which is necessary for improving current diagnostic capabilities and therapeutic capabilities. In this paper, we overview recent studies on metabolic alteration and oncometabolites, especially concerning brain cancer and mass spectrometry approaches which are now in use for the investigation of the metabolic pathway.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3018
Author(s):  
Marek Samec ◽  
Alena Liskova ◽  
Lenka Koklesova ◽  
Kevin Zhai ◽  
Elizabeth Varghese ◽  
...  

Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.


2021 ◽  
Vol 11 (3) ◽  
pp. 1259
Author(s):  
Qiong Wu ◽  
Bo Zhao ◽  
Guangchao Sui ◽  
Jinming Shi

Aberrant metabolism is one of the hallmarks of cancers. The contributions of dysregulated metabolism to cancer development, such as tumor cell survival, metastasis and drug resistance, have been extensively characterized. “Reprogrammed” metabolic pathways in cancer cells are mainly represented by excessive glucose consumption and hyperactive de novo lipogenesis. Natural compounds with anticancer activities are constantly being demonstrated to target metabolic processes, such as glucose transport, aerobic glycolysis, fatty acid synthesis and desaturation. However, their molecular targets and underlying anticancer mechanisms remain largely unclear or controversial. Mounting evidence indicated that these natural compounds could modulate the expression of key regulatory enzymes in various metabolic pathways at transcriptional and translational levels. Meanwhile, natural compounds could also inhibit the activities of these enzymes by acting as substrate analogs or altering their protein conformations. The actions of natural compounds in the crosstalk between metabolism modulation and cancer cell destiny have become increasingly attractive. In this review, we summarize the activities of natural small molecules in inhibiting key enzymes of metabolic pathways. We illustrate the structural characteristics of these compounds at the molecular level as either inhibitor of various enzymes or regulators of metabolic pathways in cancer cells. Our ultimate goal is to both facilitate the clinical application of natural compounds in cancer therapies and promote the development of novel anticancer therapeutics.


2000 ◽  
Vol 59 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Fiona Armstrong ◽  
J. C. Mathers

At its most fundamental, cancer is a genetic disease resulting from inherited or acquired mutations in tumour suppressor genes and proto-oncogenes. Environmental factors, including ingested food components, interact with genetic inheritance to determine individual cancer risk. There is growing evidence that the immune system exerts selective pressure during neoplastic development. Tumour cells that evade this immunosurveillance because they are non-antigenic or because they defend themselves successfully against immune attack have a survival advantage. Effective chemopreventative agents will include dietary components that enhance the immune system’s ability to identify transformed cells and to target them for apoptosis.


2021 ◽  
Vol 10 (2) ◽  
pp. 300
Author(s):  
Madeline Drake ◽  
Shah-Jahan M. Dodwad ◽  
Joy Davis ◽  
Lillian S. Kao ◽  
Yanna Cao ◽  
...  

The incidence of acute and chronic pancreatitis is increasing in the United States. Rates of acute pancreatitis (AP) are similar in both sexes, but chronic pancreatitis (CP) is more common in males. When stratified by etiology, women have higher rates of gallstone AP, while men have higher rates of alcohol- and tobacco-related AP and CP, hypercalcemic AP, hypertriglyceridemic AP, malignancy-related AP, and type 1 autoimmune pancreatitis (AIP). No significant sex-related differences have been reported in medication-induced AP or type 2 AIP. Whether post-endoscopic retrograde cholangiopancreatography pancreatitis is sex-associated remains controversial. Animal models have demonstrated sex-related differences in the rates of induction and severity of AP, CP, and AIP. Animal and human studies have suggested that a combination of risk factor profiles, as well as genes, may be responsible for the observed differences. More investigation into the sex-related differences of AP and CP is desired in order to improve clinical management by developing effective prevention strategies, diagnostics, and therapeutics.


2011 ◽  
Vol 39 (2) ◽  
pp. 495-499 ◽  
Author(s):  
Caroline A. Lewis ◽  
Beatrice Griffiths ◽  
Claudio R. Santos ◽  
Mario Pende ◽  
Almut Schulze

In recent years several reports have linked mTORC1 (mammalian target of rapamycin complex 1) to lipogenesis via the SREBPs (sterol-regulatory-element-binding proteins). SREBPs regulate the expression of genes encoding enzymes required for fatty acid and cholesterol biosynthesis. Lipid metabolism is perturbed in some diseases and SREBP target genes, such as FASN (fatty acid synthase), have been shown to be up-regulated in some cancers. We have previously shown that mTORC1 plays a role in SREBP activation and Akt/PKB (protein kinase B)-dependent de novo lipogenesis. Our findings suggest that mTORC1 plays a crucial role in the activation of SREBP and that the activation of lipid biosynthesis through the induction of SREBP could be part of a regulatory pathway that co-ordinates protein and lipid biosynthesis during cell growth. In the present paper, we discuss the increasing amount of data supporting the potential mechanisms of mTORC1-dependent activation of SREBP as well as the implications of this signalling pathway in cancer.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A950-A950
Author(s):  
Mara De Martino ◽  
Camille Daviaud ◽  
Claire Vanpouille-Box

BackgroundGlioblastoma (GBM) is the most aggressive and incurable adult brain tumor. Radiation therapy (RT) is an essential modality for GBM treatment and is recognized to stimulate anti-tumor immunity by inducing immunogenic cell death (ICD) subsequent to endoplasmic reticulum (ER) stress. However, RT also exacerbates potent immunosuppressive mechanisms that facilitate immune evasion. Notably, increased de novo lipid synthesis by the fatty acid synthase (FASN) is emerging as a mechanism of therapy resistance and immune escape. Here, we hypothesize that RT induces FASN to promote GBM survival and evade immune recognition by inhibiting ER stress and ICD.MethodsTo determine if lipid synthesis is altered in response to RT, we first assessed FASN expression by western blot (WB) and lipid accumulation by BODIPY staining in murine (CT2A and GL261) and human (U118) GBM cell lines. Next, FASN expression was blocked in CT2A cells using CRISPR-Cas9 or an inducible shRNA directed against Fasn to evaluate ICD and ER stress markers by ELISA, WB, and electron microscopy. Finally, CT2AshFASN cells or its non-silencing control (CT2AshNS) were orthotopically implanted and FASN knockdown was induced by feeding the mice with doxycycline. The immune contexture was determined by in situ immunofluorescence (n=3/group). Remaining mice were followed for survival (n=7/group).ResultsWe found that in vitro irradiation of GBM cells induces lipid accumulation in a dose-dependent fashion; an effect that is magnified over time lasting at least 6/7 days. Consistent with these findings, FASN expression was upregulated in irradiated GBM cells. Confirming the role of FASN, RT-induced accumulation of lipids was reverted when GBM cells were incubated with a FASN inhibitor. Next, we found that FASN ablation in CT2A cells induces mitochondria disruption and was sufficient to increase the expression of the ER stress makers BIP and CHOP. Along similar lines, shFASN enhances the secretion of the ICD markers HMGB1, IFN-beta and CXCL10 in irradiated CT2A cells. In vivo, CT2AshFASN tumors presented increased infiltration of CD11c+ cells and CD8+ T cells, consistent with prolonged mice survival (56 days vs. 28 days for CT2AshNS). Importantly, 43% of CT2AshFASN-bearing mice remained tumor-free for more than 70 days, while none of the CT2AshNS-bearing mice survived.ConclusionsAltogether, our data suggest that FASN-mediated lipid synthesis is an important mechanism to prevent ER stress, ICD, and anti-tumor immune responses in GBM. While much work remains to be done, our data propose FASN as a novel therapeutic target to overcome immunosuppression and sensitize GBM to immunotherapies.


Sign in / Sign up

Export Citation Format

Share Document