scholarly journals Kinetic and Reaction Pathway Analysis in the Application of Botulinum Toxin A for Wound Healing

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Frank J. Lebeda ◽  
Zygmunt F. Dembek ◽  
Michael Adler

A relatively new approach in the treatment of specific wounds in animal models and in patients with type A botulinum toxin is the focus of this paper. The indications or conditions include traumatic wounds (experimental and clinical), surgical (incision) wounds, and wounds such as fissures and ulcers that are signs/symptoms of disease or other processes. An objective was to conduct systematic literature searches and take note of the reactions involved in the healing process and identify corresponding pharmacokinetic data. From several case reports, we developed a qualitative model of how botulinum toxin disrupts the vicious cycle of muscle spasm, pain, inflammation, decreased blood flow, and ischemia. We transformed this model into a minimal kinetic scheme for healing chronic wounds. The model helped us to estimate the rate of decline of this toxin's therapeutic effect by calculating the rate of recurrence of clinical symptoms after a wound-healing treatment with this neurotoxin.

2020 ◽  
Vol 99 (4) ◽  
pp. 183-188

Modern medicine offers a wide spectrum of wound healing resources for acute or chronic wounds. Negative pressure wound therapy (NPWT) is a very effective method, allowing complicated defects and wounds to heal. The basic set is usually provided with various special accessories to facilitate the use and support safe application of NPWT to high-risk tissue. Selected case reports are presented herein to document the special use and combinations of materials in negative pressure wound therapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 961
Author(s):  
Sibusiso Alven ◽  
Vuyolwethu Khwaza ◽  
Opeoluwa O. Oyedeji ◽  
Blessing A. Aderibigbe

The treatment of wounds is one challenging biomedical field due to delayed wound healing common in chronic wounds. Several factors delay wound healing, including microbial infections, malnutrition, underlying physiological conditions, etc. Most of the currently used wound dressing materials suffer from poor antimicrobial properties, poor biodegradability and biocompatibility, and weak mechanical performance. Plant extracts, such as Aloe vera, have attracted significant attention in wound management because of their interesting biological properties. Aloe vera is composed of essential constituents beneficial for the wound healing process, such as amino acids, vitamins C and E, and zinc. Aloe vera influences numerous factors that are involved in wound healing and stimulates accelerated healing. This review reports the therapeutic outcomes of aloe vera extract-loaded polymer-based scaffolds in wound management.


2021 ◽  
Vol 18 ◽  
Author(s):  
Xinchi Feng ◽  
Jinsong Hao

: Chronic wounds remain a significant public problem and the development of wound treatments has been a research focus for the past few decades. Despite advances in the products derived from endogenous substances involved in a wound healing process (e.g. growth factors, stem cells, and extracellular matrix), effective and safe wound therapeutics are still limited. There is an unmet need to develop new therapeutics. Various new pathways and targets have been identified and could become a molecular target in designing novel wound agents. Importantly, many existing drugs that target these newly identified pathways could be repositioned for wound therapy, which will facilitate fast translation of research findings to clinical applications. This review discusses the newly identified pathways/targets and their potential uses in the development of wound therapeutics. Some herbs and amphibian skins have been traditionally used for wound repairs and their active ingredients have been found to act in these new pathways. Hence, screening these natural products for novel wound therapeutics remains a viable approach. The outcomes of wound care using natural wound therapeutics could be improved if we can better understand their cellular and molecular mechanisms and fabricate them in appropriate formulations, such as using novel wound dressings and nano-engineered materials. Therefore, we also provide an update on the advances in the wound therapeutics from natural sources. Overall, this review offers new insights into novel wound therapeutics.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 702
Author(s):  
Seyyed-Mojtaba Mousavi ◽  
Zohre Mousavi Nejad ◽  
Seyyed Alireza Hashemi ◽  
Marjan Salari ◽  
Ahmad Gholami ◽  
...  

Despite the advances that have been achieved in developing wound dressings to date, wound healing still remains a challenge in the healthcare system. None of the wound dressings currently used clinically can mimic all the properties of normal and healthy skin. Electrospinning has gained remarkable attention in wound healing applications because of its excellent ability to form nanostructures similar to natural extracellular matrix (ECM). Electrospun dressing accelerates the wound healing process by transferring drugs or active agents to the wound site sooner. This review provides a concise overview of the recent developments in bioactive electrospun dressings, which are effective in treating acute and chronic wounds and can successfully heal the wound. We also discuss bioactive agents used to incorporate electrospun wound dressings to improve their therapeutic potential in wound healing. In addition, here we present commercial dressings loaded with bioactive agents with a comparison between their features and capabilities. Furthermore, we discuss challenges and promises and offer suggestions for future research on bioactive agent-loaded nanofiber membranes to guide future researchers in designing more effective dressing for wound healing and skin regeneration.


Author(s):  
Francesca Rossi ◽  
Giada Magni ◽  
Francesca Tatini ◽  
Martina Banchelli ◽  
Federica Cherchi ◽  
...  

In recent years, photobiomodulation (PBM) has been recognized as a physical therapy in wound management. Despite several published research papers, the mechanism underlying photobiomodulation is still not completely understood. The investigation about application of blue light to improve wound healing is a relatively new research area. Tests in selected patients evidenced a stimulation of the healing process in superficial and chronic wounds treated with a blue LED light emitting at 420 nm; a study in animal model pointed out a faster healing process in superficial wound, with an important role of fibroblasts and myofibroblasts. Here we present a study aiming at evidencing the effects of blue light on the proliferation and metabolism in fibroblasts and keratinocytes. Different light doses were used to treat the cells, evidencing inhibitory and stimulatory effects. Electrophysiology was used to investigate the effects on membrane currents, while Raman spectroscopy revealed the mitochondrial Cytochrome C (Cyt C) oxidase dependence on blue light irradiation. In conclusion, we observed that the blue LED light can be used to modulate the activity of human fibroblasts, and the effects in wound healing are particularly evident when studying the fibroblasts and keratinocytes co-cultures.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10232
Author(s):  
Muniba Tariq ◽  
Hafiz Muhammad Tahir ◽  
Samima Asad Butt ◽  
Shaukat Ali ◽  
Asma Bashir Ahmad ◽  
...  

Background The present study aimed to prepare effective silk derived formulations in combination with plant extract (Aloe vera gel) to speed up the wound healing process in diabetic mice. Methods Diabetes was induced in albino mice by using alloxan monohydrate. After successful induction of diabetes in mice, excision wounds were created via biopsy puncture (6 mm). Wound healing effect of silk sericin (5%) and silk fibroin (5%) individually and in combination with 5% Aloe vera gel was evaluated by determining the percent wound contraction, healing time and histological analysis. Results The results indicated that the best biocompatible silk combination was of 5% silk fibroin and 5% Aloe vera gel in which wounds were healed in 13 days with wound contraction: 98.33 ± 0.80%. In contrast, the wound of the control group (polyfax) healed in 19 day shaving 98.5 ± 0.67% contraction. Histological analysis revealed that the wounds which were treated with silk formulations exhibited an increased growth of blood vessels, collagen fibers, and much reduced inflammation. Conclusion It can be concluded that a combination of Bombyx mori silk and Aloe vera gel is a natural biomaterial that can be utilized in wound dressings and to prepare more innovative silk based formulations for speedy recovery of chronic wounds.


2020 ◽  
Vol 38 (6) ◽  
pp. 435-439
Author(s):  
Evgeni Rozenfeld ◽  
Eleanora Sapoznikov Sebakhutu ◽  
Yuval Krieger ◽  
Leonid Kalichman

Objective: To review current scientific knowledge as to the efficacy of dry needling of scars on pain and other related symptoms and explore the possible physiological mechanisms of action. Methods: A narrative review of scientific literature published in English. Results: Two randomized controlled trials found that dry needling of scars (using the classic “surrounding the dragon” technique in one study and intradermal needling in a second study) was more effective than sham or control interventions with respect to scar appearance and pain. Two case reports have suggested that scar needling generates a rapid decrease in pain and improvement of mobility in scarred tissues. Another two case reports have reported positive effects of scar needling on the wound healing process. These findings are supported by an animal study examining the effect of needling on the wound healing process and the physiological mechanisms of action underlying the technique. Conclusion: There is preliminary evidence that the “surrounding the dragon” needling technique is a beneficial treatment for patients suffering from scar pain and other scar-related symptoms and can facilitate wound healing and make this process less painful. Further high-quality studies should be conducted to verify/quantify the efficacy of this method, to better understand the underlying mechanisms of action underlying the effects of scar needling and to establish an effective intervention protocol.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3401
Author(s):  
David Meléndez-Martínez ◽  
Luis Fernando Plenge-Tellechea ◽  
Ana Gatica-Colima ◽  
Martha Sandra Cruz-Pérez ◽  
José Manuel Aguilar-Yáñez ◽  
...  

Chronic wounds are a major health problem that cause millions of dollars in expenses every year. Among all the treatments used, active wound treatments such as enzymatic treatments represent a cheaper and specific option with a fast growth category in the market. In particular, bacterial and plant proteases have been employed due to their homology to human proteases, which drive the normal wound healing process. However, the use of these proteases has demonstrated results with low reproducibility. Therefore, alternative sources of proteases such as snake venom have been proposed. Here, we performed a functional mining of proteases from rattlesnakes (Crotalus ornatus, C. molossus nigrescens, C. scutulatus, and C. atrox) due to their high protease predominance and similarity to native proteases. To characterize Crotalus spp. Proteases, we performed different protease assays to measure and confirm the presence of metalloproteases and serine proteases, such as the universal protease assay and zymography, using several substrates such as gelatin, casein, hemoglobin, L-TAME, fibrinogen, and fibrin. We found that all our venom extracts degraded casein, gelatin, L-TAME, fibrinogen, and fibrin, but not hemoglobin. Crotalus ornatus and C. m. nigrescens extracts were the most proteolytic venoms among the samples. Particularly, C. ornatus predominantly possessed low molecular weight proteases (P-I metalloproteases). Our results demonstrated the presence of metalloproteases capable of degrading gelatin (a collagen derivative) and fibrin clots, whereas serine proteases were capable of degrading fibrinogen-generating fibrin clots, mimicking thrombin activity. Moreover, we demonstrated that Crotalus spp. are a valuable source of proteases that can aid chronic wound-healing treatments.


Urology ◽  
2009 ◽  
Vol 73 (2) ◽  
pp. 405-409 ◽  
Author(s):  
Tayfun Sahinkanat ◽  
Keramettin Ugur Ozkan ◽  
Harun Cıralık ◽  
Senol Ozturk ◽  
Sefa Resim

Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 768 ◽  
Author(s):  
María Puertas-Bartolomé ◽  
Blanca Vázquez-Lasa ◽  
Julio San Román

The effective treatment of chronic wounds constitutes one of the most common worldwide healthcare problem due to the presence of high levels of proteases, free radicals and exudates in the wound, which constantly activate the inflammatory system, avoiding tissue regeneration. In this study, we describe a multifunctional bioactive and resorbable membrane with in-built antioxidant agent catechol for the continuous quenching of free radicals as well as to control inflammatory response, helping to promote the wound-healing process. This natural polyphenol (catechol) is the key molecule responsible for the mechanism of adhesion of mussels providing also the functionalized polymer with bioadhesion in the moist environment of the human body. To reach that goal, synthesized statistical copolymers of N-vinylcaprolactam (V) and 2-hydroxyethyl methacrylate (H) have been conjugated with catechol bearing hydrocaffeic acid (HCA) molecules with high yields. The system has demonstrated good biocompatibility, a sustained antioxidant response, an anti-inflammatory effect, an ultraviolet (UV) screen, and bioadhesion to porcine skin, all of these been key features in the wound-healing process. Therefore, these novel mussel-inspired materials have an enormous potential for application and can act very positively, favoring and promoting the healing effect in chronic wounds.


Sign in / Sign up

Export Citation Format

Share Document