scholarly journals Therapeutic Endoscopic Ultrasonography: Intratumoral Injection for Pancreatic Adenocarcinoma

2013 ◽  
Vol 2013 ◽  
pp. 1-3 ◽  
Author(s):  
Lawrence A. Shirley ◽  
Laura K. Aguilar ◽  
Estuardo Aguilar-Cordova ◽  
Mark Bloomston ◽  
Jon P. Walker

Pancreatic adenocarcinoma is an aggressive disease that has poor outcomes despite maximal traditional therapies. Thus, treatment of this cancer demands innovative strategies to be used in addition to standing therapies in order to provide new avenues of care. Here, we describe the technique of using endoscopic ultrasound in order to directly inject both novel and conventional therapies into pancreatic tumors. We detail the rationale behind this strategy and the many benefits it provides. We then describe our technique in detail, including our experience injecting the AdV-tk adenoviral vector to create an in situ vaccine effect.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4172-4172 ◽  
Author(s):  
Jonathan P. O. Hebb ◽  
Adriane Mosley ◽  
Felipe Vences Catalan ◽  
Peter Ellmark ◽  
Per Norlen ◽  
...  

Abstract Immunotherapy has come of age and is truly a breakthrough in the treatment of cancer. Immune checkpoint inhibition is now an established and effective modality for treatment of multiple tumor types. Combination immunotherapy creates even more potential for efficacy by targeting synergistic immune pathways. However, systemically administered immunomodulators can activate T-cells non-specifically resulting in off-target toxicity, which is dose-limiting and potentially lethal in combination. Intratumoral administration of immunotherapeutic agents has several advantages including 1) higher concentrations of agents in close proximity to target antigens and tumor-infiltrating lymphocytes 2) lower doses overall with less systemic exposure and toxicity 3) potentially a novel mechanism of action such as depletion of intratumoral Tregs 4) potential for an abscopal effect, acting as an in-situ cancer vaccine. Here we report a novel combination of immunomodulators, anti-CTLA4, CD137 and OX40 administered by intratumoral route in a mouse lymphoma model (A20) as well as a colon cancer model (MC38). CTLA4 is an immune checkpoint, and CD137 and OX40 are members of the TNF receptor superfamily - all agents in clinical practice or clinical trials. For both the A20 and MC38 cell lines, a dual tumor model was used in which tumor cells were inoculated bilaterally on the flanks. BALBC mice were used for the A20 model and C57BL/6 mice for MC38. Treatment was started approximately day 8 when there were visible tumors between 5-7mm in diameter. Intratumoral injection was to the left tumor only. Injection of the triple combination at doses about 1/10 that of usual systemic doses (30 ug each) resulted in significant tumor growth inhibition/regression and a significant survival advantage for both the A20 and MC38 models. For the A20 model, at doses of approximately 1/40 systemic doses (10ug each) the triple combination resulted in tumor clearance in 70-100% of mice, and significantly prolonged survival. There was no toxicity observed. The majority of the mice remained tumor free, and did not grow tumor when rechallenged with A20 cells. The response was shown to be CD8 T-cell dependent, and in vivo CD8 depletion, but not CD4 depletion led to complete abrogation of the treatment effect. A memory t-cell response was confirmed in vitro, with CD8CD44(hi) T-Cells demonstrating increased IFN-g production when incubated with A20 cells, but not control cells (4T1 breast ca). Intratumoral administration at low doses was more effective than 2 systemic routes - intraperitoneal (IP) and subcutaneous (SC), supporting a local in situ vaccine effect. Interestingly, in single tumor model, SC injection in proximity to the tumor draining lymph node (DLN) was significantly more effective than SC injection close to a non-tumor DLN, suggesting that the tumor DLN may be equally involved as the tumor microenvironment in establishing an in situ vaccine effect. Finally, in a single tumor model, a cell based vaccine of irradiated A20 cells co-injected subcutaneously with the low dose triple combination at a site distant from the tumor and tumor DLN had anti-tumor effects greater than the triplet alone SC at the same location, but less than IT or when injected SC in proximity to the tumor DLN. Thus we demonstrate that this novel combination of immunomodulators delivered intratumorally induces a dramatic anti-tumor effect. At low doses, the triple combination is more effective when delivered IT than by systemic routes and the anti-tumor immune response is completely dependent on CD8 T-cells, supporting an in situ vaccine effect. Importantly, it appears both the tumor microenvironment and DLN are important to the anti-tumor immune response. Injecting in the region of the tumor DLN may be a viable and effective option clinically when an injectable tumor site is not easily accessible. The A20 cellular vaccine delivered together with the low dose triple combo at a site distant from the tumor was more effective than triple combo alone, but less effective than intratumoral, suggesting that elements of the tumor microenvironment and/or tumor DLN are important for full effect. Overall these results demonstrate potent anti-tumor effects of the triple combination anti-CTLA4, -CD137 and -OX40, all agents in clinical practice or clinical trials, and support the intratumoral route as safe and highly efficacious route of administration. Disclosures Hebb: Alligator Biosciences: Research Funding. Ellmark:Alligator Biosciences: Employment. Norlen:Alligator Biosciences: Employment. Felsher:Alligator Biosciences: Research Funding.


Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 194
Author(s):  
Hillary G. Pratt ◽  
Kayla J. Steinberger ◽  
Nicole E. Mihalik ◽  
Sascha Ott ◽  
Thomas Whalley ◽  
...  

Despite modest improvements in survival in recent years, pancreatic adenocarcinoma remains a deadly disease with a 5-year survival rate of only 9%. These poor outcomes are driven by failure of early detection, treatment resistance, and propensity for early metastatic spread. Uncovering innovative therapeutic modalities to target the resistance mechanisms that make pancreatic cancer largely incurable are urgently needed. In this review, we discuss the immune composition of pancreatic tumors, including the counterintuitive fact that there is a significant inflammatory immune infiltrate in pancreatic cancer yet anti-tumor mechanisms are subverted and immune behaviors are suppressed. Here, we emphasize how immune cell interactions generate tumor progression and treatment resistance. We narrow in on tumor macrophage (TAM) spatial arrangement, polarity/function, recruitment, and origin to introduce a concept where interactions with tumor neutrophils (TAN) perpetuate the microenvironment. The sequelae of macrophage and neutrophil activities contributes to tumor remodeling, fibrosis, hypoxia, and progression. We also discuss immune mechanisms driving resistance to standard of care modalities. Finally, we describe a cadre of treatment targets, including those intended to overcome TAM and TAN recruitment and function, to circumvent barriers presented by immune infiltration in pancreatic adenocarcinoma.


2021 ◽  
Vol 9 (8) ◽  
pp. e003246
Author(s):  
Casey R Ager ◽  
Akash Boda ◽  
Kimal Rajapakshe ◽  
Spencer Thomas Lea ◽  
Maria Emilia Di Francesco ◽  
...  

BackgroundIntratumoral injection of cyclic dinucleotide (CDN) agonists of the stimulator of interferon genes (STING) pathway engages innate immune activation and priming of adaptive immune effectors to foster local and distal tumor clearance. Despite proven therapeutic efficacy in preclinical models, a thorough understanding of how CDNs reprogram suppressive myeloid stroma in mouse and man is lacking.MethodsHere, we perform deep transcript-level and protein-level profiling of myeloid-derived suppressor cells and M2 macrophages following stimulation with CDNs of ascending potency. Additionally, we leverage orthotopic Kras+/G12DTP53+/R172HPdx1-Cre (KPC) derived models of pancreatic adenocarcinoma (PDAC) to determine the capacity for locally administered CDNs to sensitize PDAC to immune checkpoint blockade. We use bioluminescent in vivo imaging and 30-parameter flow cytometry to profile growth kinetics and remodeling of the tumor stroma post-therapy.ResultsHighly potent synthetic STING agonists repolarize suppressive myeloid populations of human and murine origin in part through inhibition of Myc signaling, metabolic modulation, and antagonism of cell cycle. Surprisingly, high-potency synthetic agonists engage qualitatively unique pathways as compared with natural CDNs. Consistent with our mechanistic observations, we find that intratumoral injection of the highest activity STING agonist, IACS-8803, into orthotopic pancreatic adenocarcinoma lesions unmasks sensitivity to checkpoint blockade immunotherapy. Dimensionality reduction analyses of high parameter flow cytometry data reveals substantial contributions of both myeloid repolarization and T cell activation underlying the in vivo therapeutic benefit of this approach.ConclusionsThis study defines the molecular basis of STING-mediated myeloid reprogramming, revealing previously unappreciated and qualitatively unique pathways engaged by CDNs of ascending potency during functional repolarization. Furthermore, we demonstrate the potential for high potency CDNs to overcome immunotherapy resistance in an orthotopic, multifocal model of PDAC.


2008 ◽  
Vol 26 (11) ◽  
pp. 3411-3428 ◽  
Author(s):  
P. Daum ◽  
M. H. Denton ◽  
J. A. Wild ◽  
M. G. G. T. Taylor ◽  
J. Šafránková ◽  
...  

Abstract. Among the many challenges facing the space weather modelling community today, is the need for validation and verification methods of the numerical models available describing the complex nonlinear Sun-Earth system. Magnetohydrodynamic (MHD) models represent the latest numerical models of this environment and have the unique ability to span the enormous distances present in the magnetosphere, from several hundred kilometres to several thousand kilometres above the Earth's surface. This makes it especially difficult to develop verification and validation methods which posses the same range spans as the models. In this paper we present a first general large-scale comparison between four years (2001–2004) worth of in situ Cluster plasma observations and the corresponding simulated predictions from the coupled Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) MHD code. The comparison between the in situ measurements and the model predictions reveals that by systematically constraining the MHD model inflow boundary conditions a good correlation between the in situ observations and the modeled data can be found. These results have an implication for modelling studies addressing also smaller scale features of the magnetosphere. The global MHD simulation can therefore be used to place localised satellite and/or ground-based observations into a global context and fill the gaps left by measurements.


Author(s):  
Kyuya Nakagawa ◽  
Shinri Tamiya ◽  
Shu Sakamoto ◽  
Gabsoo Do ◽  
Shinji Kono ◽  
...  

X-ray computed tomography technique was used to observe microstructure formation during freeze-drying. A specially designed vacuum freeze-drying stage was equipped at the X-ray CT stage, and the frozen and dried microstructures of dextrin solutions were successfully observed. It was confirmed that the many parts of the pore microstructures formed as a replica of the original ice microstructures, whereas some parts formed as a consequence of the dehydration dependent on the relaxation level of the glassy phases, suggesting that the post-freezing annealing is advantageous for avoiding quality loss that relates to the structural deformation of glassy matters. Keywords: freeze-drying; X-ray CT; ice microstructure; glassy state


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 175
Author(s):  
Priyanka Prakash ◽  
Wing-Hin Lee ◽  
Ching-Yee Loo ◽  
Hau Seung Jeremy Wong ◽  
Thaigarajan Parumasivam

Polyhydroxyalkanoates (PHAs) are natural polymers produced under specific conditions by certain organisms, primarily bacteria, as a source of energy. These up-and-coming bioplastics are an undeniable asset in enhancing the effectiveness of drug delivery systems, which demand characteristics like non-immunogenicity, a sustained and controlled drug release, targeted delivery, as well as a high drug loading capacity. Given their biocompatibility, biodegradability, modifiability, and compatibility with hydrophobic drugs, PHAs often provide a superior alternative to free drug therapy or treatments using other polymeric nanocarriers. The many formulation methods of existing PHA nanocarriers, such as emulsion solvent evaporation, nanoprecipitation, dialysis, and in situ polymerization, are explained in this review. Due to their flexibility that allows for a vessel tailormade to its intended application, PHA nanocarriers have found their place in diverse therapy options like anticancer and anti-infective treatments, which are among the applications of PHA nanocarriers discussed in this article. Despite their many positive attributes, the advancement of PHA nanocarriers to clinical trials of drug delivery applications has been stunted due to the polymers’ natural hydrophobicity, controversial production materials, and high production costs, among others. These challenges are explored in this review, alongside their existing solutions and alternatives.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jenna L. Wardini ◽  
Hasti Vahidi ◽  
Huiming Guo ◽  
William J. Bowman

Transmission electron microscopy (TEM), and its counterpart, scanning TEM (STEM), are powerful materials characterization tools capable of probing crystal structure, composition, charge distribution, electronic structure, and bonding down to the atomic scale. Recent (S)TEM instrumentation developments such as electron beam aberration-correction as well as faster and more efficient signal detection systems have given rise to new and more powerful experimental methods, some of which (e.g., 4D-STEM, spectrum-imaging, in situ/operando (S)TEM)) facilitate the capture of high-dimensional datasets that contain spatially-resolved structural, spectroscopic, time- and/or stimulus-dependent information across the sub-angstrom to several micrometer length scale. Thus, through the variety of analysis methods available in the modern (S)TEM and its continual development towards high-dimensional data capture, it is well-suited to the challenge of characterizing isometric mixed-metal oxides such as pyrochlores, fluorites, and other complex oxides that reside on a continuum of chemical and spatial ordering. In this review, we present a suite of imaging and diffraction (S)TEM techniques that are uniquely suited to probe the many types, length-scales, and degrees of disorder in complex oxides, with a focus on disorder common to pyrochlores, fluorites and the expansive library of intermediate structures they may adopt. The application of these techniques to various complex oxides will be reviewed to demonstrate their capabilities and limitations in resolving the continuum of structural and chemical ordering in these systems.


2016 ◽  
Vol 16 ◽  
pp. S97-S98
Author(s):  
Thomas Marron ◽  
Nina Bhardwaj ◽  
Linda Hammerich ◽  
Fiby George ◽  
Seunghee Kim-Schulze ◽  
...  

1996 ◽  
Vol 33 (6) ◽  
pp. 239-245 ◽  
Author(s):  
Thomas H. Praeger ◽  
Stuart D. Messur ◽  
Richard P. DiFiore

Remediation of contaminated sediments presents an on-going challenge in the efforts toward improved water quality and environmental restoration. Faced with this challenge, Mercury Marine recently selected a remedial alternative that included diverting creek flow and removing approximately 5,900 in-situ cubic meters of sediments containing PCBs from an impoundment in Cedar Creek. The regulatory objective was to remove all sediment containing PCBs “to the extent practicable” from an 180-meter stretch of the impoundment. A remedial investigation was conducted to collect the data necessary to characterize the site and prepare a remedial design. Technical issues involved with dry excavation that were critical to implementing this alternative included: channel diversion, sediment characterization, pond dewatering, wastewater treatment, groundwater infiltration, surface water run-off, and sediment removal, handling and disposal. Mercury Marine and its engineering staff found sediment removal by dry excavation to be a labor intensive and costly means of remediating the PCB-affected sediments at this site. Before implementing dry excavation at any site, owners, consultants, and regulatory agencies must realize the many limitations of this alternative and give special consideration to site conditions, engineering, and planning.


Sign in / Sign up

Export Citation Format

Share Document