scholarly journals The ProbioticBifidobacterium breveB632 Inhibited the Growth ofEnterobacteriaceaewithin Colicky Infant Microbiota Cultures

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Marta Simone ◽  
Caterina Gozzoli ◽  
Andrea Quartieri ◽  
Giuseppe Mazzola ◽  
Diana Di Gioia ◽  
...  

Infant colic is a common gastrointestinal disorder of newborns, mostly related to imbalances in the composition of gut microbiota and particularly to the presence of gas-producing coliforms and to lower levels of Bifidobacteria and Lactobacilli. Probiotics could help to contain this disturbance, with formulations consisting ofLactobacillusstrains being the most utilized. In this work, the probiotic strainBifidobacterium breveB632 that was specifically selected for its ability to inhibit gas-producing coliforms, was challenged against theEnterobacteriaceaewithin continuous cultures of microbiota from a 2-month-old colicky infant. As confirmed by RAPD-PCR fingerprinting,B. breveB632 persisted in probiotic-supplemented microbiota cultures, accounting for the 64% of Bifidobacteria at the steady state. The probiotic succeeded in inhibiting coliforms, since FISH and qPCR revealed that the amount ofEnterobacteriaceaeafter 18 h of cultivation was 0.42 and 0.44 magnitude orders lower(P<0.05)in probiotic-supplemented microbiota cultures than in the control ones. These results support the possibility to move to another level of study, that is, the administration ofB. breveB632 to a cohort of colicky newborns, in order to observe the behavior of this strainin vivoand to validate its effect in colic treatment.

2019 ◽  
Vol 10 (5) ◽  
pp. 521-531 ◽  
Author(s):  
R. Yao ◽  
C.B. Wong ◽  
K. Nakamura ◽  
E. Mitsuyama ◽  
A. Tanaka ◽  
...  

Polyphenols are plant derived compounds that exert many beneficial health effects to the human host. However, associated health benefits of dietary polyphenol are highly dependent on their intestinal metabolism, bioavailability, and absorption. Bifidobacteria, which represent the key members of gut microbiota, have been suggested to promote gut microbial homeostasis and may be involved in the metabolism of polyphenols. In this study, the capabilities of thirteen Bifidobacterium strains in hydrolysing polyphenol glycosides were evaluated. Among the tested strains, Bifidobacterium breve MCC1274 was found to possess the highest β-glucosidase activity and strong capability to convert daidzin and trans-polydatin to their aglycones; while kinetic analysis revealed that B. breve MCC1274 hydrolysed more than 50% of daidzin and trans-polydatin at less than 3 h of incubation. Further investigation using rats with an antibiotics-disturbed microbiome revealed that following the ingestion of daidzin glycoside, oral administration of B. breve MCC1274 significantly enhanced the plasma concentration of daidzein in rats pre-treated with antibiotics as compared to antibiotics-pre-treated control and non-treated control groups. The relative abundance of Actinobacteria and the total numbers of B. breve were also significantly higher in antibiotics-pre-treated rats administered with B. breve MCC1274 than that of the control groups. These findings suggest that B. breve MCC1274 is effective in enhancing the bioavailability of daidzein in the gut under dysbiosis conditions and may potentially improve intestinal absorption of isoflavones and promote human health.


2019 ◽  
Vol 85 (7) ◽  
Author(s):  
Manuela Centanni ◽  
Scott A. Ferguson ◽  
Ian M. Sims ◽  
Ambarish Biswas ◽  
Gerald W. Tannock

ABSTRACTInfants fed breast milk harbor a gut microbiota in which bifidobacteria are generally predominant. The metabolic interactions of bifidobacterial species need investigation because they may offer insight into the colonization of the gut in early life.Bifidobacterium bifidumATCC 15696 hydrolyzes 2′-O-fucosyl-lactose (2FL; a major fucosylated human milk oligosaccharide) but does not use fucose released into the culture medium. However, fucose is a growth substrate forBifidobacterium breve24b, and both strains utilize lactose for growth. The provision of fucose and lactose byB. bifidum(the donor) allowing the growth ofB. breve(the beneficiary) conforms to the concept of syntrophy, but both strains will compete for lactose to multiply. To determine the metabolic impact of this syntrophic/competitive relationship on the donor, the transcriptomes ofB. bifidumwere determined and compared in steady-state monoculture and coculture using transcriptome sequencing (RNA-seq) and reverse transcription-quantitative PCR (RT-qPCR).B. bifidumgenes upregulated in coculture included those encoding alpha-l-fucosidase and carbohydrate transporters and those involved in energy production and conversion.B. bifidumabundance was the same in coculture as in monoculture, butB. brevedominated the coculture numerically. Cocultures during steady-state growth in 2FL medium produced mostly acetate with little lactate (acetate:lactate molar ratio, 8:1) compared to that in monobatch cultures containing lactose (2:1), which reflected the maintenance of steady-state cells in log-phase growth. Darwinian competition is an implicit feature of bacterial communities, but syntrophy is a phenomenon putatively based on cooperation. Our results suggest that the regulation of syntrophy, in addition to competition, may shape bacterial communities.IMPORTANCEThis study addresses the microbiology and function of a natural ecosystem (the infant bowel) usingin vitroexperimentation with bacterial cultures maintained under controlled growth and environmental conditions. We studied the growth of bifidobacteria whose nutrition centered on the hydrolysis of a human milk oligosaccharide. The results revealed responses relating to metabolism occurring in aBifidobacterium bifidumstrain when it provided nutrients that allowed the growth ofBifidobacterium breve, and so discovered biochemical features of these bifidobacteria in relation to metabolic interaction in the shared environment. These kinds of experiments are essential in developing concepts of bifidobacterial ecology that relate to the development of the gut microbiota in early life.


2021 ◽  
Vol 9 (5) ◽  
pp. 1026
Author(s):  
Machiko Otaka ◽  
Hiroko Kikuchi-Hayakawa ◽  
Jun Ogura ◽  
Hiroshi Ishikawa ◽  
Yukihito Yomogida ◽  
...  

We previously reported lower counts of lactobacilli and Bifidobacterium in the gut microbiota of patients with major depressive disorder (MDD), compared with healthy controls. This prompted us to investigate the possible efficacy of a probiotic strain, Lacticaseibacillus paracasei strain Shirota (LcS; basonym, Lactobacillus casei strain Shirota; daily intake of 8.0 × 1010 colony-forming units), in alleviating depressive symptoms. A single-arm trial was conducted on 18 eligible patients with MDD or bipolar disorder (BD) (14 females and 4 males; 15 MDD and 3 BD), assessing changes in psychiatric symptoms, the gut microbiota, and biological markers for intestinal permeability and inflammation, over a 12-week intervention period. Depression severity, evaluated by the Hamilton Depression Rating Scale, was significantly alleviated after LcS treatment. The intervention-associated reduction of depressive symptoms was associated with the gut microbiota, and more pronounced when Bifidobacterium and the Atopobium clusters of the Actinobacteria phylum were maintained at higher counts. No significant changes were observed in the intestinal permeability or inflammation markers. Although it was difficult to estimate the extent of the effect of LcS treatment alone, the results indicated that it was beneficial to alleviate depressive symptoms, partly through its association with abundance of Actinobacteria in the gut microbiota.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2004
Author(s):  
Marzena Jabczyk ◽  
Justyna Nowak ◽  
Bartosz Hudzik ◽  
Barbara Zubelewicz-Szkodzińska

Curcumin is one of the most frequently researched herbal substances; however, it has been reported to have a poor bioavailability and fast metabolism, which has led to doubts about its effectiveness. Curcumin has antioxidant and anti-inflammatory effects, and has demonstrated favorable health effects. Nevertheless, well-reported in vivo pharmacological activities of curcumin are limited by its poor solubility, bioavailability, and pharmacokinetic profile. The bidirectional interactions between curcumin and gut microbiota play key roles in understanding the ambiguity between the bioavailability and biological activity of curcumin, including its wider health impact.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 959 ◽  
Author(s):  
Jefferson Antônio Leite ◽  
Gabriela Pessenda ◽  
Isabel C. Guerra-Gomes ◽  
Alynne Karen Mendonça de Santana ◽  
Camila André Pereira ◽  
...  

Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2−/−) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2−/− mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2−/− mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing β cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.


2019 ◽  
Vol 25 (37) ◽  
pp. 4946-4967 ◽  
Author(s):  
Anna K. Kiss ◽  
Jakub P. Piwowarski

The popularity of food products and medicinal plant materials containing hydrolysable tannins (HT) is nowadays rapidly increasing. Among various health effects attributable to the products of plant origin rich in gallotannins and/or ellagitannins the most often underlined is the beneficial influence on diseases possessing inflammatory background. Results of clinical, interventional and animal in vivo studies clearly indicate the antiinflammatory potential of HT-containing products, as well as pure ellagitannins and gallotannins. In recent years a great emphasis has been put on the consideration of metabolism and bioavailability of natural products during examination of their biological effects. Conducted in vivo and in vitro studies of polyphenols metabolism put a new light on this issue and indicate the gut microbiota to play a crucial role in the health effects following their oral administration. The aim of the review is to summarize the knowledge about HT-containing products’ phytochemistry and their anti-inflammatory effects together with discussion of the data about observed biological activities with regards to the current concepts on the HTs’ bioavailability and metabolism. Orally administered HT-containing products due to the limited bioavailability of ellagitannins and gallotannins can influence immune response at the level of gastrointestinal tract as well as express modulating effects on the gut microbiota composition. However, due to the chemical changes being a result of their transit through gastrointestinal tract, comprising of hydrolysis and gut microbiota metabolism, the activity of produced metabolites has to be taken into consideration. Studies regarding biological effects of the HTs’ metabolites, in particular urolithins, indicate their strong and structure-dependent anti-inflammatory activities, being observed at the concentrations, which fit the range of their established bioavailability. The impact of HTs on inflammatory processes has been well established on various in vivo and in vitro models, while influence of microbiota metabolites on silencing the immune response gives a new perspective on understanding anti-inflammatory effects attributed to HT containing products, especially their postulated effectiveness in inflammatory bowel diseases (IBD) and cardiovascular diseases.


2005 ◽  
Vol 169 (4) ◽  
pp. 569-576 ◽  
Author(s):  
Clare L. Bennett ◽  
Erwin van Rijn ◽  
Steffen Jung ◽  
Kayo Inaba ◽  
Ralph M. Steinman ◽  
...  

Langerhans cells (LC) form a unique subset of dendritic cells (DC) in the epidermis but so far their in vivo functions in skin immunity and tolerance could not be determined, in particular in relation to dermal DC (dDC). Here, we exploit a novel diphtheria toxin (DT) receptor (DTR)/DT-based system to achieve inducible ablation of LC without affecting the skin environment. Within 24 h after intra-peritoneal injection of DT into Langerin-DTR mice LC are completely depleted from the epidermis and only begin to return 4 wk later. LC deletion occurs by apoptosis in the absence of inflammation and, in particular, the dDC compartment is not affected. In LC-depleted mice contact hypersensitivity (CHS) responses are significantly decreased, although ear swelling still occurs indicating that dDC can mediate CHS when necessary. Our results establish Langerin-DTR mice as a unique tool to study LC function in the steady state and to explore their relative importance compared with dDC in orchestrating skin immunity and tolerance.


1980 ◽  
Vol 58 (9) ◽  
pp. 1072-1077 ◽  
Author(s):  
Florent Depocas ◽  
Gloria Zaror-Behrens ◽  
Suzanne Lacelle

Desmethylimipramine (DMI, 1 mg DMI∙HCl kg−1) and normetanephrine (NMN, 1 μg min−1 g−0.74) were used to inhibit, respectively, neuronal and extraneuronal uptakes of noradrenaline (NA) during calorigenesis induced in barbital-sedated warm-acclimated (WA) or cold-acclimated (CA) rats by infusion of NA, a procedure which mimics the effects of NA released within calorigenic tissues in response to cold exposure. The doses of the inhibitors were selected for maximal effectiveness in potentiating calorigenic response and for minimal side effects. For rats of either acclimation group treated with DMI and NMN, with DMI only, or with neither inhibitor the doses of NA required to evoke approximately half-maximal calorigenic responses were, respectively, 0.5, 1.0, and 3.5 ng min−1 g−0.74. The corresponding steady-state concentrations of NA in arterial plasma averaged 14.3, 21.7, and 43.2 nM in the three groups of WA rats and 10.0, 14.8, and 31.9 nM in the three groups of CA rats. Reduction by NA uptake inhibitors of the circulating levels of NA necessary to stimulate calorigenesis, half-maximally, presumably in brown adipose tissue, indicates a reduction in the steepness of the NA concentration gradient between capillary plasma and synaptic clefts in that tissue. The steady-state concentration of NA in blood plasma of rats treated with DMI and NMN and infused with NA at a dose of 0.5 ng min−1 g−0.74 (~1 × 10−8 M) is a good estimate of the NA concentration required at calorigenic adrenoceptors to effect half-maximal activation. Presumably, this concentration is also an estimate of that resulting from NA released at nerve endings during cold-induced activation of nonshivering thermogenesis at half-maximal rates in brown adipose tissue.


Sign in / Sign up

Export Citation Format

Share Document