scholarly journals Overexpression of the Synthetic Chimeric Native-T-phylloplanin-GFP Genes Optimized for Monocot and Dicot Plants Renders Enhanced Resistance to Blue Mold Disease in Tobacco (N. tabacumL.)

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Dipak K. Sahoo ◽  
Sumita Raha ◽  
James T. Hall ◽  
Indu B. Maiti

To enhance the natural plant resistance and to evaluate the antimicrobial properties of phylloplanin against blue mold, we have expressed a synthetic chimeric native-phylloplanin-GFP protein fusion in transgenicNicotiana tabacumcv. KY14, a cultivar that is highly susceptible to infection byPeronospora tabacina. The coding sequence of the tobacco phylloplanin gene along with its native signal peptide was fused with GFP at the carboxy terminus. The synthetic chimeric gene (native-phylloplanin-GFP) was placed between the modifiedMirabilis mosaic virusfull-length transcript promoter with duplicated enhancer domains and the terminator sequence from the rbcSE9 gene. The chimeric gene, expressed in transgenic tobacco, was stably inherited in successive plant generations as shown by molecular characterization, GFP quantification, and confocal fluorescent microscopy. Transgenic plants were morphologically similar to wild-type plants and showed no deleterious effects due to transgene expression. Blue mold-sensitivity assays of tobacco lines were performed by applyingP. tabacinasporangia to the upper leaf surface. Transgenic lines expressing the fused synthetic native-phyllopanin-GFP gene in the leaf apoplast showed resistance to infection. Our results demonstrate thatin vivoexpression of a synthetic fused native-phylloplanin-GFP gene in plants can potentially achieve natural protection against microbial plant pathogens, includingP. tabacinain tobacco.

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1345
Author(s):  
Hao Wang ◽  
Mengqi Zhang ◽  
Yujuan Xu ◽  
Renjie Zong ◽  
Nan Xu ◽  
...  

Soil-born plant pathogens, especially Agrobacterium, generally navigate their way to hosts through recognition of the root exudates by chemoreceptors. However, there is still a lack of appropriate identification of chemoreceptors and their ligands in Agrobacterium. Here, Atu0526, a sCache-type chemoreceptor from Agrobacterium fabrum C58, was confirmed as the receptor of a broad antibacterial agent, formic acid. The binding of formic acid to Atu0526 was screened using a thermo shift assay and verified using isothermal titration calorimetry. Inconsistent with the previously reported antimicrobial properties, formic acid was confirmed to be a chemoattractant to A. fabrum and could promote its growth. The chemotaxis of A. fabrum C58 toward formic acid was completely lost with the knock-out of atu0526, and regained with the complementation of the gene, indicating that Atu0526 is the only chemoreceptor for formic acid in A. fabrum C58. The affinity of formic acid to Atu0526LBD significantly increased after the arginine at position 115 was replaced by alanine. However, in vivo experiments showed that the R115A mutation fully abolished the chemotaxis of A. fabrum toward formic acid. Molecular docking based on a predicted 3D structure of Atu0526 suggested that the arginine may provide “an anchorage” for formic acid to pull the minor loop, thereby forming a conformational change that generates the ligand-binding signal. Collectively, our findings will promote an understanding of sCache-type chemoreceptors and their signal transduction mechanism.


2021 ◽  
Vol 22 (13) ◽  
pp. 7130
Author(s):  
Jeffersson Krishan Trigo-Gutierrez ◽  
Yuliana Vega-Chacón ◽  
Amanda Brandão Soares ◽  
Ewerton Garcia de Oliveira Mima

Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.


2003 ◽  
Vol 77 (5) ◽  
pp. 2981-2989 ◽  
Author(s):  
Xinyong Zhang ◽  
Martin Fugère ◽  
Robert Day ◽  
Margaret Kielian

ABSTRACT The alphavirus Semliki Forest virus (SFV) infects cells via a low-pH-dependent membrane fusion reaction mediated by the E1 envelope protein. Fusion is regulated by the interaction of E1 with the receptor-binding protein E2. E2 is synthesized as a precursor termed “p62,” which forms a stable heterodimer with E1 and is processed late in the secretory pathway by a cellular furin-like protease. Once processing to E2 occurs, the E1/E2 heterodimer is destabilized so that it is more readily dissociated by exposure to low pH, allowing fusion and infection. We have used FD11 cells, a furin-deficient CHO cell line, to characterize the processing of p62 and its role in the control of virus fusion and infection. p62 was not cleaved in FD11 cells and cleavage was restored in FD11 cell transfectants expressing human furin. Studies of unprocessed virus produced in FD11 cells (wt/p62) demonstrated that the p62 protein was efficiently cleaved by purified furin in vitro, without requiring prior exposure to low pH. wt/p62 virus particles were also processed during their endocytic uptake in furin-containing cells, resulting in more efficient virus infection. wt/p62 virus was compared with mutant L, in which p62 cleavage was blocked by mutation of the furin-recognition motif. wt/p62 and mutant L had similar fusion properties, requiring a much lower pH than control virus to trigger fusion and fusogenic E1 conformational changes. However, the in vivo infectivity of mutant L was more strongly inhibited than that of wt/p62, due to additional effects of the mutation on virus-cell binding.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Jared S. Stine ◽  
Bryan J. Harper ◽  
Cathryn G. Conner ◽  
Orlin D. Velev ◽  
Stacey L. Harper

Lignin is the second most abundant biopolymer on Earth after cellulose. Since lignin breaks down in the environment naturally, lignin nanoparticles may serve as biodegradable carriers of biocidal actives with minimal environmental footprint compared to conventional antimicrobial formulations. Here, a lignin nanoparticle (LNP) coated with chitosan was engineered. Previous studies show both lignin and chitosan to exhibit antimicrobial properties. Another study showed that adding a chitosan coating can improve the adsorption of LNPs to biological samples by electrostatic adherence to oppositely charged surfaces. Our objective was to determine if these engineered particles would elicit toxicological responses, utilizing embryonic zebrafish toxicity assays. Zebrafish were exposed to nanoparticles with an intact chorionic membrane and with the chorion enzymatically removed to allow for direct contact of particles with the developing embryo. Both mortality and sublethal endpoints were analyzed. Mortality rates were significantly greater for chitosan-coated LNPs (Ch-LNPs) compared to plain LNPs and control groups. Significant sublethal endpoints were observed in groups exposed to Ch-LNPs with chorionic membranes intact. Our study indicated that engineered Ch-LNP formulations at high concentrations were more toxic than plain LNPs. Further study is warranted to fully understand the mechanisms of Ch-LNP toxicity.


Development ◽  
1997 ◽  
Vol 124 (8) ◽  
pp. 1433-1441 ◽  
Author(s):  
A. Nose ◽  
T. Umeda ◽  
M. Takeichi

Drosophila Connectin (CON) is a cell surface protein of the leucine-rich repeat family. During the formation of neuromuscular connectivity, CON is expressed on the surface of a subset of embryonic muscles and on the growth cones and axons of the motoneurons that innervate these muscles, including primarily SNa motoneurons and their synaptic targets (lateral muscles). In vitro, CON can mediate homophilic cell adhesion. In this study, we generated transgenic lines that ectopically expressed CON on all muscles. In the transformant embryos and larvae, SNa motoneurons often inappropriately innervated a neighboring non-target muscle (muscle 12) that ectopically expressed CON. Furthermore, the ectopic synapse formation was dependent on the endogenous CON expression on the SNa motoneurons. These results show that CON can function as an attractive and homophilic target recognition molecule in vivo.


2011 ◽  
Vol 5 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Oliver D Schneider ◽  
Dirk Mohn ◽  
Roland Fuhrer ◽  
Karina Klein ◽  
Käthi Kämpf ◽  
...  

Background: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. Materials and Methods: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. Results: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. Conclusions: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects.


2019 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Marie Caroline Ferreira Laborde ◽  
Deila Magna dos Santos Botelho ◽  
Gabriel Alfonso Alvarez Rodriguez ◽  
Mário Lúcio Vilela de Resende ◽  
Marisa Vieira de Queiroz ◽  
...  

<p>Saprobe fungi and necrotrophic pathogens share the same niche within crop stubble and the search for fungi non-pathogenic to plants that are able to displace the plant pathogens from its overwintering substrate contributes to the disease management. Brown eye spot (<em>Cercospora coffeicola</em>) is among the most important coffee diseases, it is caused by a necrotrophic pathogen that has decaying leaves as its major source of inoculum. We have screened saprobe fungi for the ability to reduce <em>C. coffeicola</em> sporulation and viability and determined the possible mechanisms involved in the observed biocontrol. A selected saprobe fungus, <em>Phialomyces macrosporus</em>, reduced the pathogen’s viability by 40% both <em>in vitro</em> and <em>in vivo</em>. The fungus acts through antibiosis and competition for nutrients. It produced both volatile and non-volatile compounds that inhibited <em>C. coffeicola</em> growth, sporulation, and viability. It also produced the tissue maceration enzyme (polygalacturonase), which reduces the pathogen both in detached leaves or in planta. The reduction in the fungal viability either by the saprobe fungus or its polygalacturonase-fraction supernatant resulted in the reduction of the disease rate. Therefore, <em>P. macrosporus </em>is a potential microbial agent that can be used in an integrated management of brown eye spot through the reduction of the initial inoculum of the pathogen that survives and builds up in infected leaves.</p><p> </p>


2020 ◽  
Author(s):  
Alexandre Brenet ◽  
Rahma Hassan-Abdi ◽  
Nadia Soussi-Yanicostas

AbstractSuccinate dehydrogenase inhibitors (SDHIs), the most widely used fungicides in agriculture today, act by blocking succinate dehydrogenase (SDH), an essential and evolutionarily conserved component of mitochondrial respiratory chain. Recent results showed that several SDHIs used as fungicides not only inhibit the SDH activity of target fungi but also block this activity in human cells in in vitro models, revealing a lack of specificity and thus a possible health risk for exposed organisms, including humans. Despite the frequent detection of SDHIs in the environment and on harvested products and their increasing use in modern agriculture, their potential toxic effects in vivo, especially on neurodevelopment, are still under-evaluated. Here we assessed the neurotoxicity of bixafen, one of the latest-generation SDHIs, which had never been tested during neurodevelopment. For this purpose, we used a well-known vertebrate model for toxicity testing, namely zebrafish transparent embryos, and live imaging using transgenic lines labelling the brain and spinal cord. Here we show that bixafen causes microcephaly and defects on motor neuron axon outgrowth and their branching during development. Our findings show that the central nervous system is highly sensitive to bixafen, thus demonstrating in vivo that bixafen is neurotoxic in vertebrates and causes neurodevelopmental defects. This work adds to our knowledge of the toxic effect of SDHIs on neurodevelopment and may help us take appropriate precautions to ensure protection against the neurotoxicity of these substances.


Sign in / Sign up

Export Citation Format

Share Document