scholarly journals The Use of Plant Antimicrobial Compounds for Food Preservation

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Tana Hintz ◽  
Karl K. Matthews ◽  
Rong Di

Foodborne disease is a global issue with significant impact on human health. With the growing consumer demand for natural preservatives to replace chemical compounds, plant antimicrobial compounds must be thoroughly investigated for their potential to serve as biopreservatives. This review paper will focus on the plant-derived products as antimicrobial agents for use in food preservation and to control foodborne pathogens in foods. Structure, modes of action, stability, and resistance to these plant compounds will be discussed as well as their application in food industries and possible technologies by which they can be delivered. Benefits as well as challenges, such as the need for further research for implementation and governmental regulation, will be highlighted.

1993 ◽  
Vol 56 (4) ◽  
pp. 302-305 ◽  
Author(s):  
V. K. JUNEJA ◽  
P. M. DAVIDSON

The sensitivity of Listeria monocytogenes Scott A and ATCC 19114 to antimicrobial compounds was altered when bacterial membrane lipid composition was modified by growth in the presence of added fatty acids. Analysis of cellular fatty acid composition by gas-liquid chromatography indicated that L. monocytogenes Scott A cells contained 0.97, 2.32, 0.81, and 0.72% (relative) of C14:0, C16:0, C18:0, and C18:l, respectively. In the presence of exogenously supplied C14:0, C16:0, C18:0, and C18:l, the percentages increased to 14.03, 30.92, 16.30, and 27.90%. Average MICs for L. monocytogenes Scott A and ATCC 19114 to sodium chloride, tertiary butylhydroquinone, methyl paraben, and propyl paraben were 10.0%, 81, 1406, and 544 μg/ml, respectively. Growing either strain in the presence of 50 μg/ml of either exogenously added C14:0 or C18:0 fatty acids increased their resistance to the four antimicrobial compounds. However, growth in the presence of C18:1 led to increased sensitivity to the antimicrobial agents. The results indicate that the susceptibility of L. monocytogenes to antimicrobial agents is related to the lipid composition of the cell membrane. Consequently, food preservation processes which alter fatty acid composition of L. monocytogenes could result in changes in antimicrobial susceptibility.


2020 ◽  
Vol 20 (8) ◽  
pp. 629-646 ◽  
Author(s):  
Oladipupo Odunayo Olatunde ◽  
Soottawat Benjakul ◽  
Ahmet Faruk Yesilsu

Antimicrobial-resistant microorganisms have become a major challenge for public health and food industries because of their fast adaptability and slow response to synthetic antimicrobials. Bioactive compounds from marine sources exert various biological roles including antioxidant, antimicrobial, anti-inflammatory, antihypertensive, and anticancer properties. Their advantage as an antimicrobial compound is gradually be exploited, particularly in marine-based foods (MBFs), which are highly perishable since they are abundant in proteins, lipids, and other nutrients. Also, the growing demand for fresh products with prolonged shelf-life is making the MBFs industry to urgently seek the effective methods for preservation of fresh or refrigerated MBFs. Crustaceans, which are invertebrates, are valuable source of essential nutrient based on their richness in protein, carbohydrate, minerals, lipids, and vitamins. Additionally, the by-product from the processing of crustaceans could be used as an alternative source of antimicrobials, which can be employed in MBFs as natural preservatives. This review therefore revisited the recovery of antimicrobials compounds such as antimicrobial peptides, carotenoids, and chitosan derivatives from crustaceans. The uses of these crustacean antimicrobials in extending the shelf-life of MBFs are also discussed.


Author(s):  
Ivana Cabarkapa ◽  
Marija Skrinjar ◽  
Nevena Nemet ◽  
Ivan Milovanovic

Molds are ubiquitously distributed in nature and their spores can be found in the atmosphere even at high altitudes. The difficulty of controlling these undesirable molds, as well as the growing interest of the consumers in natural products, have been forcing the industry to find new alternatives for food preservation. The modern trends in nutrition suggest the limitation of synthetic food additives or substitution with natural ones. Aromatic herbs are probably the most important source of natural antimicrobial agents. Origanum heracleoticum L. essential oil has been known as an interesting source of antimicrobial compounds to be applied in food preservation. In the this work, we have investigated the effect of essential oil obtained from O. heracleoticum on growth of six isolates of Penicillium aurantiogriseum and four isolates of Penicillium chrysogenum isolated from meat plant for traditional Petrovacka sausage (Petrovsk? klob?sa) production. The findings reveal that the essential oil of O. heracleoticum provides inhibition of all of fungal isolates tested. O. heracleoticum L. essential oil exhibited higher antifungal activity against the isolates of P. chrysogenum than the isolates of P. aurantiogriseum. O. heracleoticum essential oil showed a MIC value ranging from 25 to 100 ?L/mL. The fungi cultivated in the medium with higher concentration of essential oil showed certain morphological changes. The alterations included lack of sporulation and loss of pigmentation.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1042E-1043 ◽  
Author(s):  
Chien Wang

Berry fruits such as blackberries (Rubus sp.) and blueberries (Vaccinium corymbosum L.) are highly perishable after harvest. In addition to rapid deterioration in quality, they are also very susceptible to microbial invasion. The shelf life of these berries is usually terminated by decay. Several natural antimicrobial compounds derived from essential oils of plants were studied for their efficacies in inhibiting decay and extending shelf life of berry fruits. The severity of decay in blackberries and blueberries stored at 10 °C was significantly reduced by treatment with thymol. Treatments with menthol or eugenol also suppressed the fungal growth, but to a lesser extent. All of these three natural antimicrobial compounds extended shelf life of blackberries and blueberries as compared to the control. Berries treated with thymol, menthol, or eugenol also maintained better fruit quality with higher levels of sugars, organic acids, and oxygen radical absorbance capacity than the untreated fruits. The effects of these natural antimicrobial agents on the quality and shelf life of other fruits will be investigated.


Author(s):  
Virginia Fuochi ◽  
Rosalia Emma ◽  
Pio Maria Furneri

: Nowadays, consumers have become increasingly attentive to human health and the use of more natural products. Consequently, the demand for natural preservatives in the food industry is more frequent. This has led to an intense research to discover new antimicrobial compounds of natural origin which could effectively fight foodborne pathogens. This research aims to safeguard the health of consumers and, above all, to avoid potentially harmful chemical compounds. Lactobacillus is a bacterial genus belonging to the Lactic Acid Bacteria and many strains are defined GRAS, generally recognized as safe. These strains are able to produce substances with antibacterial activity against food spoilage bacteria and contaminating pathogens: the bacteriocins. The aim of this review was to focus on this genus and their capability to produce antibacterial peptides. The review collected all the information of the last few years about bacteriocins produced by Lactobacillus strains, isolated from clinical or food samples, with remarkable antimicrobial activities useful for being exploited in the food field. In addition, the advantages and disadvantages of their use, and the possible ways of improvement for industrial application were described.


Author(s):  
Jiaheng Liu ◽  
Rongrong Huang ◽  
Qianqian Song ◽  
Hui Xiong ◽  
Juan Ma ◽  
...  

Nisin produced by certain Lactococcus lactis strains is commercially used in meat and dairy industries because of its effective antibacterial activity and food safety characteristics. It has been proved that the antibacterial activity could be enhanced when combined with other antimicrobial agents. In this study, we demonstrated that nisin and 3-phenyllactic acid (PLA) in combination displayed excellent combinational antibacterial activity against foodborne pathogens including S. xylosus and M. luteus. The potential application in food preservation was further verified via microbial analysis during the storage of meat and milk, and determination of strawberry rot rate. Scanning electron microscopy observation indicated a distinct mode of PLA with nisin, which may target at the dividing cell, contributing to their combinational antibacterial effect of nisin and PLA. Considering the positive results, a nisin-PLA co-producing strain was constructed based on the food-grade strain L. lactis F44, a nisin Z producer. By the knockout of two L-lactate dehydrogenase (LDH) and overexpression of D-LDHY25A, the yield of PLA was significantly increased 1.77-fold in comparison with the wild type. Anti-bacterial assays demonstrated that the fermentation product of the recombinant strain performed highly effective antibacterial activity. These results provided a promising prospect for the nisin-PLA co-expressing L. lactis in food preservation on account of its considerable antibacterial activity and cost-effective performance.


Author(s):  
Awulachew Melaku Tafese

This review paper is aims to give a brief description of encapsulation and control release technology in food preservation. Besides the material give potential information for those who interested for future development perspectives of the sector and also create awareness potentially for readers, traders, Students, factory workers, technologist and related stakeholder. the selection of encapsulating materials depends on the types, origins, and properties of these food ingredients. It is being increasingly popular in pharmaceutical, nutraceutical and functional food industries as a highly effective method that performs various functions; the major being prolonging the shelf-life of the active, masking the undesirable flavour, colour and taste and controlling the release of bioactive.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1092
Author(s):  
Annalisa Ricci ◽  
Gaia Bertani ◽  
Antonietta Maoloni ◽  
Valentina Bernini ◽  
Alessia Levante ◽  
...  

To prevent foodborne diseases and extend shelf-life, antimicrobial agents may be used in food to inhibit the growth of undesired microorganisms. In addition to the prevention of foodborne diseases, another huge concern of our time is the recovery of agri-food byproducts. In compliance with these challenges, the aim of this work was to more deeply investigate the antimicrobial activity of extracts derived from fermented tomato, melon, and carrot byproducts, previously studied. All the fermented extracts had antimicrobial activity both in vitro and in foodstuff, showing even higher activity than commercial preservatives, tested for comparison against spoilage microorganisms and foodborne pathogens such as Salmonella spp., L. monocytogenes, and B. cereus. These promising results highlight an unstudied aspect for the production of innovative natural preservatives, exploitable to improve the safety and shelf-life of various categories of foodstuff.


Author(s):  
Nilushi Indika Bamunu Arachchige ◽  
Fazlurrahman Khan ◽  
Young-Mog Kim

Background: The treatment of infection caused by pathogenic bacteria becomes one of the serious concerns globally. The failure in the treatment was found due to the exhibition of multiple resistance mechanisms against the antimicrobial agents. Emergence of resistant bacterial species has also been observed due to prolong treatment using conventional antibiotics. To combat these problems, several alternative strategies have been employed using biological and chemically synthesized compounds as antibacterial agents. Marine organisms considered as one of the potential sources for the isolation of bioactive compounds due to the easily available, cost-effective, and eco-friendly. Methods: The online search methodology was adapted for the collection of information related to the antimicrobial properties of marine-derived compounds. These compound has been isolated and purified by different purification techniques, and their structure also characterized. Furthermore, the antibacterial activities have been reported by using broth microdilution as well as disc diffusion assays. Results: The present review paper describes the antimicrobial effect of diverse secondary metabolites which are isolated and purified from the different marine organisms. The structural elucidation of each secondary metabolite has also been done in the present paper, which will help for the in silico designing of the novel and potent antimicrobial compounds. Conclusion: A thorough literature search has been made and summarizes the list of antimicrobial compounds that are isolated from both prokaryotic and eukaryotic marine organisms. The information obtained from the present paper will be helpful for the application of marine compounds as antimicrobial agents against different antibiotic-resistant human pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document