scholarly journals Effect of Particle Size and Ligand on the Tribological Properties of Amino Functionalized Hairy Silica Nanoparticles as an Additive to Polyalphaolefin

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Tianyi Sui ◽  
Baoyu Song ◽  
Feng Zhang ◽  
Qingxiang Yang

Hairy nanoparticles, which graft organic chains on nanoparticles, have led to a wide variety of advanced materials and have been applied in many fields over the past two decades. In this paper, effects of nanoparticle size and organic chain on the tribological properties of amino functionalized hairy silica nanoparticles (HSNs) were investigated. Silica nanoparticles with different sizes and amino group organic chains were synthesized and dispersed into polyalphaolefin (PAO) via a modified process. The synthesized HSNs were characterized by variety of methods. The tribology properties of those HSNs were investigated using a four-ball tribometer. The coefficient of friction and wear scar diameter were measured and analyzed. It was found that the HSNs could form a stable homogeneous solution with PAO. The tribological performance of the PAO 100 was enhanced dramatically by adding the HSNs. The data suggested that HSNs with larger size, longer organic chains, and more amino groups gave better antiwear and friction reduction properties than other nanoparticles.

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Wang Li-jun ◽  
Guo Chu-wen ◽  
Ryuichiro Yamane

The synthesis and application of nanometer-sized particles have received considerable attention in recent years because of their different physical and chemical properties from those of the bulk materials or individual molecules; however, few experimental investigations on the tribological properties of lubricating oils with and without nanoferromagnetic particles have been performed. This work investigates the tribological properties of Mn0.78Zn0.22Fe2O4 nanoferromagnetic as additive in 46# turbine oil using a four-ball friction and wear tester. It is shown that the 46# turbine oil containing Mn0.78Zn0.22Fe2O4 nanoparticles has much better friction reduction and antiwear abilities than the base oil. The 46# turbine oil doped with 6wt%Mn0.78Zn0.22Fe2O4 nanoparticles show the best tribological properties among the tested oil samples, and PB value is increased by 26%, and the decreasing percentage of wear scar diameter is 25.45% compared to base oil.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1336
Author(s):  
Jorge Caessa ◽  
Todor Vuchkov ◽  
Talha Bin Yaqub ◽  
Albano Cavaleiro

Friction and wear contribute to high energetic losses that reduce the efficiency of mechanical systems. However, carbon alloyed transition metal dichalcogenide (TMD-C) coatings possess low friction coefficients in diverse environments and can self-adapt to various sliding conditions. Hence, in this investigation, a semi-industrial magnetron sputtering device, operated in direct current mode (DC), is utilized to deposit several molybdenum-selenium-carbon (Mo-Se-C) coatings with a carbon content up to 60 atomic % (at. %). Then, the carbon content influence on the final properties of the films is analysed using several structural, mechanical and tribological characterization techniques. With an increasing carbon content in the Mo-Se-C films, lower Se/Mo ratio, porosity and roughness appeared, while the hardness and compactness increased. Pin-on-disk (POD) experiments performed in humid air disclosed that the Mo-Se-C vs. nitrile butadiene rubber (NBR) friction is higher than Mo-Se-C vs. steel friction, and the coefficient of friction (CoF) is higher at 25 °C than at 200 °C, for both steel and NBR countersurfaces. In terms of wear, the Mo-Se-C coatings with 51 at. % C showed the lowest specific wear rates of all carbon content films when sliding against steel. The study shows the potential of TMD-based coatings for friction and wear reduction sliding against rubber.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 1127-1138 ◽  
Author(s):  
Fengjun Wei ◽  
Bingli Pan ◽  
Juan Lopez

Abstract A kind of carbon fabric/epoxy composite was successfully prepared with carbon fiber fabric as reinforced phase and epoxy resin as binder phase, then the nano-TiO2 and a hybrid system of TiO2/MWNTs was added into the carbon fabric/ epoxy composite matrix respectively to prepare a kind of nano-composite. The friction and wear properties of CF/EP composites under different load conditions have been studied in this article, during the study the effects of filler types and contents on the tribological properties were researched, at last the worn surfaces were investigated and the abrasion mechanism was discussed. The results showed that: whether filling the nano-TiO2 alone or mixing the TiO2/MWNTs, it was able to achieve a good effect on decreasing friction and reducing wear, and the optimum addition ratio of the nano-TiO2 particles was 3.0% , meanwhile 3.0% of nano-TiO2 and 0.4% of MWNTs could cooperate with each other in their dimension, and could show a synergistic effect on modifying the tribological properties of CF/EP composites, the coefficient of friction of the modified composites decreased by 20% and the wear life increased by more than 140% compared with that of pristine composite materials, in the process of friction and wear, the wear form of the composites materials varied from brittle rupture to abrasive wear gradually.


Author(s):  
Takashi Nogi

Some tribological properties of an ionic liquid were investigated by using a pin-on-disc friction and wear tester. Due to running-in, the coefficient of friction of the ionic liquid decreased with time to a very low value of 0.02 which suggests that the lubrication regime was hydrodynamic at the end of the tests. Anti-wear performance of the ionic liquid was substantially comparable to a paraffin-based oil.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1589 ◽  
Author(s):  
Mazin Tahir ◽  
Abdul Samad Mohammed ◽  
Umar Azam Muhammad

The effect of various operational factors, such as sliding speed, normal load and temperature on the tribological properties of Date palm fruit syrup (DPFS) as an environmentally friendly lubricant, is investigated. Ball-on-disc wear tests are conducted on mild steel samples in the presence of DPFS as a lubricant under different conditions and the coefficient of friction and wear rate are measured. Scanning electron microscopy, stylus profilometry, and Fourier transform infrared spectroscopy are used to evaluate the wear tracks to determine the underlying wear mechanisms. Results showed that DPFS has excellent tribological properties in terms of low friction and low wear rates making it a potential candidate to be used as a lubricant in tribological applications.


2018 ◽  
Vol 70 (3) ◽  
pp. 499-505
Author(s):  
Shanhua Qian ◽  
Hongyue Wang ◽  
Chuanhui Huang ◽  
Yongwu Zhao

Purpose This paper aims to modify carbon nanotubes with oleic acid, and to study the tribological properties of castor oil with modified carbon nanotubes additives. The proper additives are sought for the future engineering application of castor oil. Design/methodology/approach Tribological properties of the castor oils mixed with the modified carbon nanotubes of four mass percentages were investigated using a four-ball testing rig. Coefficient of friction and wear scar diameter were obtained in each test, and the mechanism of modified carbon nanotubes and castor oil was discussed. Findings The results indicated that modified carbon nanotubes had better dispersion in castor oil. Coefficient of friction first increased, then decreased and finally grew stable with the time, and wear scar diameter of steel surface functioned as a first reduced then increased change with the additive mass percentage of modified carbon nanotubes. The minimum of average coefficient of friction and wear scar diameter occurred at 0.02 Wt.% modified carbon nanotubes. Originality/value A small amount of modified carbon nanotubes could improve properties of the castor oil, and the mixed castor oil with 0.02 Wt.% modified carbon nanotubes would be most possibly used in engineering applications.


2016 ◽  
Vol 78 (9-2) ◽  
Author(s):  
Nurul Farhanah Azman ◽  
Syahrullail Samion ◽  
Erween Abd Rahim

Vegetable oils have recently received worldwide attention for their use as a lubricant base stock that has numerous advantages, including their environmental friendliness. In this study, a refined, bleached and deodorised palm stearin was selected as the base lubricant, and its friction and wear performance were investigated with a pin-on-disk tribotester. The effect of zinc dialkyl-dithiophosphate (ZDDP) additive in concentrations of 1wt%, 3wt% and 5wt% on friction and wear performance were evaluated. Commercial semi-synthetic oil SAE 15W50 was used for comparison purposes. The experiments were conducted at a sliding speed of 1.5 m/s under a normal force of 9.81 N for 60 min. Results show that an increase in ZDDP concentrations improved both friction reduction and wear performance of the lubricant. The coefficient of friction (COF) of RBD palm stearin was reduced approximately at 71% when 5wt% of ZDDP was added and it shows that the friction reduction performance of PS+5wt% (COF=0.039) was comparable to SAE 15W50 (COF=0.035). While, wear coefficient of RBD palm stearin was reduced significantly from 2.08 × 10−3 to 8.89 x 10−5 when 5wt% ZDDP additive was added and it shows that the wear performance of PS+5wt% was better than that of SAE 15W50, 1.94 x 10−4. Further analysis of the wear worn surface with a high-resolution optical microscope was also conducted with a surface profilometer to examine the metallurgy of the pin surface and the roughness of the pin.  


2016 ◽  
Vol 68 (5) ◽  
pp. 577-585 ◽  
Author(s):  
Zhengfeng Cao ◽  
Yanqiu Xia ◽  
Xiangyu Ge

Purpose The purpose of this paper is to synthesize a new kind of conductive grease which possesses a prominent conductive capacity and good tribological properties. Design/methodology/approach A two-step method was used to prepare complex lithium-based grease. Ketjen black (KB), acetylene black (AB) and carbon black (CB) were characterized by transmission electron microscope and used as lubricant additives to prepare conductive greases. Conductive capacity was evaluated by a conductivity meter, a surface volume resistivity meter and a circuit resistance meter. Tribological properties were investigated by a reciprocating friction and wear tester (MFT-R4000). The worn surfaces were analyzed by a scanning electron microscope, Raman spectroscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscope. Findings The conductive grease prepared with KB has a prominent conductive capacity at room temperature, 100°C and 150°C. Further, this conductive grease also possesses better tribological properties than AB and KB greases. When the concentration of KB is 1.8 Wt.%, the coefficient of friction and wear width reduced by 11 and 14 per cent, respectively. Originality/value This work is a new application of nanometer KB as a lubricant additive in grease, which provides a direction for preparing conductive grease. The conductivity and tribology experiments have been carried out though the variation of experiment conductions.


2015 ◽  
Vol 642 ◽  
pp. 147-151
Author(s):  
Mu Jung Kao ◽  
Fu Chun Hsu

This project investigated the tribological properties and nanomechanics of Cu-benzotriazole (BTA) composite nanooils. Cu-BTA nanoparticles were synthesized by a thermal decomposition process. Cu-BTA nanoparticles were added into paraffin oil to form the nanooils. Cu-BTA explores the nanomechanics of sphere geometry functions as a rolling medium for friction lower. BTA nanoparticles functions as a protector from oxidation of the Cu nanoparticles in various test circumstances. Tribological experiments were conducted using a pin-on-disk (ASTM G99) test for the wear scar diameter, friction coefficient, and morphology of worn surfaces. The experiment results revealed the dispersion capability of the benzotriazole-capped Cu nanoparticles and indicated the dispersing stability in liquid paraffin oil for the BTA-capped surface of Cu nanoparticles. The testing results show that the Cu-BTA nanoparticle used as an additive in paraffin oil at an appropriate concentration exhibits better tribological properties than those of pure paraffin oil. Cu-BTA functioning as an additives have different anti-wear abilities due to its small size effect and a high absolute viscosity given high Herser number, corresponds to relatively thick lubricant film and an larged elastohydrodynamic lubrication area. A thin film or powder consisting of spherical Cu-BTA nanoparticles on pin-on-disk (ASTM G99) test iron surface protests against damage from relative rolling movement, which reduces friction and wear.


2021 ◽  
Vol 66 ◽  
pp. 35-44
Author(s):  
Li Ming Wu ◽  
Bo Rui Yang ◽  
Fang Xia Zhao ◽  
Zhen Zhong Zhang

For the development of complex calcium sulfonate grease containing ultrafine SiO2/MoS2 powders with self-reparing performance. On the basis of the dispersion of the nanoSiO2 particles, the effects of particle size,addition amount,load and the mass ratio of nanoSiO2 to ultrafine MoS2 powders on the tribological properties of commercial No.2 complex calcium sulfonate grease were systematically studied by four ball friction and wear tester. The results show that suitable particle size and addition amount of single SiO2 and MoS2 powders can significantly reduce the coefficient of friction (COF) and the wear scar diameter (WSD) of the grease. The composite of nanoSiO2 and MoS2 powder can broaden the load range of base grease and further improve the tribological properties of complex calcium sulfonate grease. When the mass ratio of nanoSiO2 powder to MoS2 powder is 3:7 and the total addition amount is 0.8wt%, the COF and the WSD of the grease are decreased by 53.64% and 27.08%, respectively, compared with the base grease. The two powders in the composite grease have synergy effect for improving the tribological performance and the friction stability of the grease during the process of long friction.


Sign in / Sign up

Export Citation Format

Share Document