scholarly journals Biological Activities of 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-Glucoside in Antiaging and Antiaging-Related Disease Treatments

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Shuang Ling ◽  
Jin-Wen Xu

2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is active component of the Chinese medicinal plantPolygonum multiflorumThunb. (THSG). Pharmacological studies have demonstrated that THSG exhibits numerous biological functions in treating atherosclerosis, lipid metabolism, vascular and cardiac remodeling, vascular fibrosis, cardiac-cerebral ischemia, learning and memory disorders, neuroinflammation, Alzheimer and Parkinson diseases, diabetic complications, hair growth problems, and numerous other conditions. This review focuses on the biological effects of THSG in antiaging and antiaging-related disease treatments and discusses its molecular mechanisms.

2010 ◽  
Vol 5 ◽  
pp. BMI.S6184 ◽  
Author(s):  
Sun Tian ◽  
Paul Roepman ◽  
Laura J van't Veer ◽  
Rene Bernards ◽  
Femke De Snoo ◽  
...  

Background MammaPrint was developed as a diagnostic tool to predict risk of breast cancer metastasis using the expression of 70 genes. To better understand the tumor biology assessed by MammaPrint, we interpreted the biological functions of the 70-genes and showed how the genes reflect the six hallmarks of cancer as defined by Hanahan and Weinberg. Results We used a bottom-up system biology approach to elucidate how the cellular processes reflected by the 70-genes work together to regulate tumor activities and progression. The biological functions of the genes were analyzed using literature research and several bioinformatics tools. Protein-protein interaction network analyses indicated that the 70-genes form highly interconnected networks and that their expression levels are regulated by key tumorigenesis related genes such as TP53, RB1, MYC, JUN and CDKN2A. The biological functions of the genes could be associated with the essential steps necessary for tumor progression and metastasis, and cover the six well-defined hallmarks of cancer, reflecting the acquired malignant characteristics of a cancer cell along with tumor progression and metastasis-related biological activities. Conclusion Genes in the MammaPrint gene signature comprehensively measure the six hallmarks of cancer-related biology. This finding establishes a link between a molecular signature and the underlying molecular mechanisms of tumor cell progression and metastasis.


2022 ◽  
Vol 12 ◽  
Author(s):  
Cheng Wang ◽  
Shu Dai ◽  
Lihong Gong ◽  
Ke Fu ◽  
Cheng Ma ◽  
...  

Polygonum multiflorum Thunb. (He-shou-wu in Chinese), a Chinese botanical drug with a long history, is widely used to treat a variety of chronic diseases in clinic, and has been given the reputation of “rejuvenating and prolonging life” in many places. 2,3,4′,5-tetrahydroxystilbene-2-O-β-D-glucoside (TSG, C20H22O9) is the main and unique active ingredient isolated from Polygonum multiflorum Thunb., which has extensive pharmacological activities. Modern pharmacological studies have confirmed that TSG exhibits significant activities in treating various diseases, including inflammatory diseases, neurodegenerative diseases, cardiovascular diseases, hepatic steatosis, osteoporosis, depression and diabetic nephropathy. Therefore, this review comprehensively summarizes the pharmacological and pharmacokinetic properties of TSG up to 2021 by searching the databases of Web of Science, PubMed, ScienceDirect and CNKI. According to the data, TSG shows remarkable anti-inflammation, antioxidation, neuroprotection, cardiovascular protection, hepatoprotection, anti-osteoporosis, enhancement of memory and anti-aging activities through regulating multiple molecular mechanisms, such as NF-κB, AMPK, PI3K-AKT, JNK, ROS-NO, Bcl-2/Bax/Caspase-3, ERK1/2, TGF-β/Smad, Nrf2, eNOS/NO and SIRT1. In addition, the toxicity and pharmacokinetics of TSG are also discussed in this review, which provided direction and basis for the further development and clinical application of TSG.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 585 ◽  
Author(s):  
Begoña Ayuda-Durán ◽  
Susana González-Manzano ◽  
Antonio Miranda-Vizuete ◽  
Eva Sánchez-Hernández ◽  
Marta R. Romero ◽  
...  

Quercetin is one the most abundant flavonoids in the human diet. Although it is well known that quercetin exhibits a range of biological activities, the mechanisms behind these activities remain unresolved. The aim of this work is to progress in the knowledge of the molecular mechanisms involved in the biological effects of quercetin using Caenorhabditis elegans as a model organism. With this aim, the nematode has been used to explore the ability of this flavonoid to modulate the insulin/insulin-like growth factor 1(IGF-1) signaling pathway (IIS) and the expression of some genes related to stress response. Different methodological approaches have been used, i.e., assays in knockout mutant worms, gene expression assessment by RT-qPCR, and C. elegans transgenic strains expressing green fluorescent protein (GFP) reporters. The results showed that the improvement of the oxidative stress resistance of C. elegans induced by quercetin could be explained, at least in part, by the modulation of the insulin signaling pathway, involving genes age-1, akt-1, akt-2, daf-18, sgk-1, daf-2, and skn-1. However, this effect could be independent of the transcription factors DAF-16 and HSF-1 that regulate this pathway. Moreover, quercetin was also able to increase expression of hsp-16.2 in aged worms. This observation could be of particular interest to explain the effects of enhanced lifespan and greater resistance to stress induced by quercetin in C. elegans, since the expression of many heat shock proteins diminishes in aging worms.


2018 ◽  
Vol 2018 ◽  
pp. 1-15
Author(s):  
Dalin Chen ◽  
Hongliang Li ◽  
Wen Li ◽  
Shuo Feng ◽  
Dingsen Deng

Kaempferia parviflora (KP), a health-promoting herb, has been traditionally used for treating a variety of diseases. Pharmacological studies have claimed the various benefits from KP and its main effective methoxyflavones, including cellular metabolism-regulating activity, anticancer activity, vascular relaxation and cardioprotective activity, sexual enhancing activity, neuroprotective activity, antiallergic, anti-inflammatory, and antioxidative activity, antiosteoarthritis activity, antimicroorganism activity, and transdermal permeable activity. These might be associated with increased mitochondrial functions and activated cGMP-NO signaling pathway. However, the underlying molecular mechanisms of KP and its methoxyflavones are still under investigation. The clinical applications of KP and its methoxyflavones may be limited due to their low bioavailability. But promising strategies are on the way. This review will comprehensively discuss the biological activities of KP and its methoxyflavones.


2020 ◽  
Vol 15 (1) ◽  
pp. 4-10 ◽  
Author(s):  
Yang Cao ◽  
Wanli Smith ◽  
Liang Yan ◽  
Lingbo Kong

Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene. However, differences in the nature and position of substituents have made it possible to produce many derivatives. Piceatannol [PT], a hydroxylated derivative from resveratrol, exerts various biological activities ranging from cancer prevention, cardio- protection, neuro-protection, anti-diabetic, depigmentation and so on. Although positive results were obtained in most cell culture and animal studies, the relevant cellular and molecular mechanisms of cytokines and signaling pathway about their biological effects still unclear. Thus, in the current review, we focus on the latest findings of PT on cellular biology in order to better understand the underlying therapeutic mechanisms of PT among various diseases.


2021 ◽  
Vol 8 ◽  
Author(s):  
Qingsui Cao ◽  
Ge Wang ◽  
Ye Peng

A growing number of medicinal and edible plants have attracted increasing attention due to their abundant constituents and biological activities including turnip. Turnip (Brassica rapa L.) is an herbaceous biennial plant belonging to Cruciferae Brassica. As one of the oldest cultivated vegetables widely consumed in Asia, the turnip has received significant attention in the studies of its bioactive components and biological function. Multiple bioactive components in turnip, such as glucosinolates, isothiocyanate, phenolic compounds, flavonoids, and organic acids, were identified. The bioactivity studies on turnip revealed its anticancer, antimicrobe, anti-hypoxia, anti-diabetes, anti-oxidation, and nephroprotective activity. The present review mainly summarized the previous studies on the chemical compositions of turnip and the bioactivities associated with turnip. Further studies on the extraction and purification of compounds from a turnip as well as its potential molecular mechanisms are highly needed to utilize turnip as a functional food plant in a better way.


Author(s):  
Cristina Fernandez-Mejia ◽  
Maria-Luisa Lazo-de-la-Vega-Monroy

Understanding the molecular mechanisms of vitamins has opened new perspectives regarding the relationship between nutritional signals and biological functions, which, in turn, has led to the development of new therapeutic agents. Although little is known about water-soluble vitamins as genetic modulators, evidence about their effects on gene expression has grown. In the case of biotin, besides its role as a carboxylase prosthetic group, it also affects gene expression and has a wide repertoire of effects on biological functions. Only recently, the role of pharmacological concentrations of biotin on systemic functions has attracted attention, and it is now being reconsidered with the help of new technologies. This novel approach could lead to new perspectives in its use as a therapeutic agent. The present review is focused on the effects of pharmacological concentrations of biotin on several biological functions and on the biotin signaling pathways that participate in gene expression.


2018 ◽  
Vol 25 (14) ◽  
pp. 1663-1681 ◽  
Author(s):  
Chun-Ting Lee ◽  
Heng-Chun Kuo ◽  
Yung-Hsiang Chen ◽  
Ming-Yen Tsai

The polysaccharides in many plants are attracting worldwide attention because of their biological activities and medical properties, such as anti-viral, anti-oxidative, antichronic inflammation, anti-hypertensive, immunomodulation, and neuron-protective effects, as well as anti-tumor activity. Denodrobium species, a genus of the family orchidaceae, have been used as herbal medicines for hundreds of years in China due to their pharmacological effects. These effects include nourishing the Yin, supplementing the stomach, increasing body fluids, and clearing heat. Recently, numerous researchers have investigated possible active compounds in Denodrobium species, such as lectins, phenanthrenes, alkaloids, trigonopol A, and polysaccharides. Unlike those of other plants, the biological effects of polysaccharides in Dendrobium are a novel research field. In this review, we focus on these novel findings to give readers an overall picture of the intriguing therapeutic potential of polysaccharides in Dendrobium, especially those of the four commonly-used Denodrobium species: D. huoshanense, D. offininale, D. nobile, and D. chrysotoxum.


2020 ◽  
Vol 13 ◽  
Author(s):  
Sajad Fakhri ◽  
Jayanta Kumar Patra ◽  
Swagat Kumar Das ◽  
Gitishree Das ◽  
Mohammad Bagher Majnooni ◽  
...  

Background: As a major cause of morbidity and mortality, cardiovascular diseases (CVDs) are globally increasing. In spite of recent development in the management of cardiovascular complications, CVDs have remained a medical challenge. Numerous conventional drugs are used to play cardioprotective roles; however, they are associated with several side effects. Considering the rich phytochemistry and fewer side effects of herbal medicines, they have gained particular attention to develop novel herbal drugs with cardioprotective potentials. Amongst natural entities, ginger is an extensively used and well-known functional food and condiment, possessing plentiful bioactivities, like antiinflammatory, antioxidant, and antimicrobial properties in several disorders management. Objective: The current review deliberated phytochemical properties as well as the ginger/ginger constituents' biological activities and health benefits in several diseases, with particular attention to cardiovascular complications. Methods: A comprehensive research was conducted using multiple databases, including Scopus, PubMed, Medline, Web of Science, national database (Irandoc and SID), and related articles in terms of the health benefits and cardioprotective effects of ginger/ginger constituents. These data were collected from inception until August 2019. Results: In recent years, several herbal medicines were used to develop new drugs with more potency and also minor side effects. Amongst natural entities, ginger is an extensively used traditional medicine in several diseases. The crude extract, along with related pungent active constituents, is mostly attributed to heart health. The cardioprotective effects of ginger are contributed to its cardiotonic, antihypertensive, anti-hyperlipidemia, and anti-platelet effects. The signaling pathways and molecular mechanisms of ginger regarding its cardioprotective effects are also clarified. Conclusion: This study revealed the biological activities, health benefits, and cardioprotective properties of ginger/ginger constituents along with related mechanisms of action, which gave new insights to show new avenue in the treatment of CVDs.


2020 ◽  
Vol 06 ◽  
Author(s):  
Surya Kant Tripathi ◽  
Sunayna Behera ◽  
Munmun Panda ◽  
Gokhan Zengin ◽  
Bijesh K. Biswal

Background: Lagerstroemia speciosa (L.) Pers is one of the most valuable plants due to its ornamental and pharmacological relevance. It is known for its anti-diabetic activity with proved potent blood sugar-lowering activity. The anti-diabetic activity is due to presence of its biologically active component corosolic acid. Moreover, L. speciosa and its novel purified compounds are also well-known for its several biological activities with beneficial health benefit on the human being. Objectives: This review provides a summary of pharmacokinetics, toxicity, and pharmacological properties of L. speciosa and its purified phytochemicals which may help researchers for building up new researches in near future. Methods: The current article is prepared by collecting through various online and offline databases. Preliminary source of study and data collection for outlining the review was research articles and reviews that have been already published by many reputed publishers, including Springer, Elsevier, Taylor & Francis imprints, BMC, Willy, The Norwegian Academy of Science and Letters, Environmental health prospective (EHP), and PLOS One. Result: The available studies results suggested that the L. speciosa and its phytochemicals showed antidiabetic, anticancer, anti-inflammatory, antimicrobial, antioxidant, antiviral, anti-obesity, and cardio-protective activities. Pharmacokinetic stud-ies suggested the low bioavailability of its purified compounds. However, nano-encapsulation can improve the bioavaila-bility related issue and effectively potentiate the medicinal properties of its constituents. Conclusion: Considering the worthy pharmacological properties, L. speciosa is considered as a potent source of several novel drugs. Though, still preclinical and clinical studies are needed to reveal the targets, molecular mechanisms, bioavail-ability, and toxicity of its constituents.


Sign in / Sign up

Export Citation Format

Share Document