scholarly journals Periploca forrestiiSaponin Ameliorates Murine CFA-Induced Arthritis by Suppressing Cytokine Production

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yingqin Liu ◽  
Minghui Li ◽  
Qiuhong He ◽  
Xinping Yang ◽  
Fang Ruan ◽  
...  

Periploca forrestiiSchltr. has been used as a Chinese folk medicine due to its versatile pharmacological effects such as promoting wounds and rheumatoid arthritis. However, the antiarthritic activity ofPeriploca forrestiisaponin (PFS) and its active compound Periplocin has still not been demonstrated. Here, we evaluated the antiarthritic effects of PFS in adjuvant-induced arthritis (AIA) rats by intragastric administration at a dose of 50 mg/kg. The anti-inflammatory activities of Periplocin were also examined in LPS-induced AIA splenocytes and synoviocytes. PFS significantly ameliorated joint swelling; inhibited bone erosion in joints; lowered levels of IL-6 and TGF-β1 in AIA rat splenocyte; and reduced joint protein expression levels of phospho-STAT3 and IKKα. Using LPS-induced AIA splenocytes, we demonstrate that Periplocin suppressed the key proinflammatory cytokines levels of IL-6, IFN-γ, TGF-β1, and IL-13 and IL-22 and transcription factor levels of T-bet, GATA3, and C-Jun genes. Periplocin also suppressed LPS-induced cytokine secretion from synoviocytes. Our study highlights the antiarthritic activity of PFS and its derived Periplocin and the underlying mechanisms. These results provide a strong rationale for further testing and validation of the use ofPeriploca forrestiiSchltr. as an alternative modality for the treatment of RA.

2021 ◽  
Vol 12 ◽  
Author(s):  
David Achudhan ◽  
Shan-Chi Liu ◽  
Yen-You Lin ◽  
Chien-Chung Huang ◽  
Chun-Hao Tsai ◽  
...  

Extracts from Taiwan’s traditional medicinal mushroom, Antrodia cinnamomea, exhibit anti-inflammatory activities in cellular and preclinical studies. However, this paper is the first to report that Antcin K, a triterpenoid isolated from A. cinnamomea, inhibits proinflammatory cytokine production in human rheumatoid synovial fibroblasts (RASFs), which are major players in rheumatoid arthritis (RA) disease. In our analysis of the mechanism of action, Antcin K inhibited the expression of three cytokines (tumor necrosis factor alpha [TNF-α], interleukin 1 beta [IL-1β] and IL-8) in human RASFs; cytokines that are crucial to RA synovial inflammation. Notably, incubation of RASFs with Antcin K reduced the phosphorylation of the focal adhesion kinase (FAK), phosphoinositide 3-kinase (PI3K), protein kinase B (AKT) and nuclear factor-κB (NF-κB) signaling cascades, all of which promote cytokine production in RA. Intraperitoneal injections of Antcin K (10 mg/kg or 30 mg/kg) attenuated paw swelling, cartilage degradation and bone erosion, and decreased serum levels of TNF-α, IL-1β, IL-8 in collagen-induced arthritis (CIA) mice; in further experiments, IL-6 levels were similarly reduced. The inhibitory effects of Antcin K upon TNF-α, IL-1β and IL-8 expression in human RASFs was achieved through the downregulation of the FAK, PI3K, AKT and NF-κB signaling cascades. Our data support clinical investigations using Antcin K in RA disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lichuang Huang ◽  
Shaoqi Hu ◽  
Meiyu Shao ◽  
Xin Wu ◽  
Jida Zhang ◽  
...  

Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to cartilage destruction and bone erosion. In-depth exploration of the pathogenesis of RA and the development of effective therapeutic drugs are of important clinical and social value. Herein, we explored the medicinal value of Cornus officinalis Sieb. and Paeonia lactiflora Pall. in RA treatment using a rat model of collagen-induced arthritis (CIA). We compared the therapeutic effect of Cornus officinalis and Paeonia lactiflora with that of their main active compounds, ursolic acid and paeoniflorin, respectively. We demonstrated that the combination of Cornus officinalis and Paeonia lactiflora effectively inhibited the release of factors associated with oxidative stress and inflammation during RA, therein ameliorating the symptoms and suppressing the progression of RA. We further showed that the underlying mechanisms may be related to the regulation of apoptosis in synovial tissues, and we investigated the potential involvement of AMPK-mediated mitochondrial dynamics in the therapeutic action of the two drugs and their active components.


Author(s):  
Shengyuan Wang ◽  
Chuanling Wang ◽  
Lihua Wang ◽  
Zhiyou Cai

Background: Mammalian target of rapamycin (mTOR) has been evidenced as a multimodal therapy in the path-ophysiological process of acute ischemic stroke (AIS). However, the pathway that minocycline targets mTOR signaling is not fully defined in the AIS pathogenesis. This study is to aim at the effects of minocycline on the mTOR signaling in the AIS process and further discover the underlying mechanisms of minocycline involved in the following change of mTOR signaling-autophagy. Methods: Cerebral ischemia/reperfusion (CIR) rat animal models were established with the transient suture occlusion into middle cerebral artery. Minocycline (50mg/kg) was given by intragastric administration. The Morris water maze was used to test the cognitive function of animals. Immunohistochemistry and immunofluorescence were introduced for testing the lev-els of synaptophysin and PSD-95. Western blot was conducted for investigating the levels of mTOR, p-mTOR (Ser2448), p70S6, p-p70S6 (Thr389), eEF2k, p-eEF2k (Ser366), p-eIF4B (Ser406), LC3, p62, synaptophysin and PSD-95. Results: Minocycline prevents cognitive decline of the MCAO stroke rats. Minocycline limits the expression of p-mTOR (Ser2448) and the downstream targets of mTOR [p70S6, p-p70S6 (Thr389), eEF2k, p-eEF2k (Ser366) and p-eIF4B (Ser406)] (P<0.01), while minocycline has no influence on mTOR. LC3-II abundance and the LC3-II/I ratio were upregu-lated in the hippocampus of the MCAO stroke rats by the minocycline therapy (P<0.01). p62 was downregulated in the hippocampus from the MCAO stroke rats administrated with minocycline therapy(P<0.01). The levels of SYP and PSD-95 were up-regulated in the brain of the MCAO stroke rats administrated with minocycline therapy. Conclusion: Minocycline prevents cognitive deficits via inhibiting mTOR signaling and enhancing autophagy process, and promoting the expression of pre-and postsynaptic proteins (synaptophysin and PSD-95) in the brain of the MCAO stroke rats. The potential neuroprotective role of minocycline in the process of cerebral ischemia may be related to mitigating is-chemia-induced synapse injury via inhibiting activation of mTOR signaling.


2015 ◽  
Vol 1 (2) ◽  
pp. 122-128
Author(s):  
Syuichi Koarada ◽  
Yuri Sadanaga ◽  
Natsumi Nagao ◽  
Satoko Tashiro ◽  
Rie Suematsu ◽  
...  

2020 ◽  
Vol 117 (48) ◽  
pp. 30639-30648
Author(s):  
Dan Hu ◽  
Emily C. Tjon ◽  
Karin M. Andersson ◽  
Gabriela M. Molica ◽  
Minh C. Pham ◽  
...  

IL-17–producing Th17 cells are implicated in the pathogenesis of rheumatoid arthritis (RA) and TNF-α, a proinflammatory cytokine in the rheumatoid joint, facilitates Th17 differentiation. Anti-TNF therapy ameliorates disease in many patients with rheumatoid arthritis (RA). However, a significant proportion of patients do not respond to this therapy. The impact of anti-TNF therapy on Th17 responses in RA is not well understood. We conducted high-throughput gene expression analysis of Th17-enriched CCR6+CXCR3−CD45RA−CD4+T (CCR6+T) cells isolated from anti-TNF–treated RA patients classified as responders or nonresponders to therapy. CCR6+T cells from responders and nonresponders had distinct gene expression profiles. Proinflammatory signaling was elevated in the CCR6+T cells of nonresponders, and pathogenic Th17 signature genes were up-regulated in these cells. Gene set enrichment analysis on these signature genes identified transcription factor USF2 as their upstream regulator, which was also increased in nonresponders. Importantly, short hairpin RNA targetingUSF2in pathogenic Th17 cells led to reduced expression of proinflammatory cytokines IL-17A, IFN-γ, IL-22, and granulocyte-macrophage colony-stimulating factor (GM-CSF) as well as transcription factor T-bet. Together, our results revealed inadequate suppression of Th17 responses by anti-TNF in nonresponders, and direct targeting of the USF2-signaling pathway may be a potential therapeutic approach in the anti-TNF refractory RA.


2021 ◽  
Author(s):  
Jiuxiao Ruan ◽  
Huhui Chen ◽  
Tao Zhu ◽  
Yaoguang Yu ◽  
Yawen Lei ◽  
...  

Abstract In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.


2021 ◽  
Vol 22 (5) ◽  
pp. 2426
Author(s):  
Askhat Myngbay ◽  
Limara Manarbek ◽  
Steve Ludbrook ◽  
Jeannette Kunz

Rheumatoid arthritis (RA) is a chronic autoimmune disease causing inflammation of joints, cartilage destruction and bone erosion. Biomarkers and new drug targets are actively sought and progressed to improve available options for patient treatment. The Collagen Triple Helix Repeat Containing 1 protein (CTHRC1) may have an important role as a biomarker for rheumatoid arthritis, as CTHRC1 protein concentration is significantly elevated in the peripheral blood of rheumatoid arthritis patients compared to osteoarthritis (OA) patients and healthy individuals. CTHRC1 is a secreted glycoprotein that promotes cell migration and has been implicated in arterial tissue-repair processes. Furthermore, high CTHRC1 expression is observed in many types of cancer and is associated with cancer metastasis to the bone and poor patient prognosis. However, the function of CTHRC1 in RA is still largely undefined. The aim of this review is to summarize recent findings on the role of CTHRC1 as a potential biomarker and pathogenic driver of RA progression. We will discuss emerging evidence linking CTHRC1 to the pathogenic behavior of fibroblast-like synoviocytes and to cartilage and bone erosion through modulation of the balance between bone resorption and repair.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1353.2-1353
Author(s):  
A. Yadon ◽  
D. Ruelas ◽  
G. Min-Oo ◽  
J. Taylor ◽  
M. R. Warr

Background:Rheumatoid arthritis (RA) is characterized by chronic, uncontrolled joint inflammation and tissue destruction. Macrophages are thought to be key mediators in both the initiation and perpetuation of this pathology.1,2The RA synovium contains a complex inflammatory milieu that can stimulate macrophage-dependent production of proinflammatory cytokines through multiple signaling pathways.1,2Existing evidence indicates that toll-like receptors (TLRs) and interleukin-1 receptors (IL-1R) along with their agonists, damage-associated molecular patterns (DAMPs) and IL-1β, are highly expressed in RA joints and are important mediators of synovial macrophage activation and proinflammatory cytokine production.1-9IRAK4 (interleukin-1 receptor-associated kinase 4) is a serine/threonine kinase that facilitates TLR and IL-1R signaling in many cell types, including macrophages.10IRAK4 inhibition represents an opportunity to reduce proinflammatory cytokine production in the joints of patients with RA.Objectives:To investigate the effect of a highly selective IRAK4 inhibitor on proinflammatory cytokine production from human macrophages stimulated with synovial fluid from patients with RA.Methods:Primary human monocytes from 2 independent donors were differentiated for 6 days with granulocyte-macrophage colony-stimulating factor (GM-CSF) to generate human monocyte-derived macrophages (hMDMs). hMDMs were then pretreated with an IRAK4 inhibitor for 1 hour and subsequently stimulated for 24 hours with RA synovial fluid from 5 patients. Culture supernatants were then assessed for secretion of proinflammatory cytokines by MesoScale Discovery.Results:RA synovial fluid stimulation of hMDMs resulted in the production of several proinflammatory cytokines, including IL-6, IL-8, and TNFα. Pretreatment of hMDMs with an IRAK4 inhibitor resulted in the dose-dependent inhibition of IL-6, IL-8, and TNFα production, with an average EC50± SD of 27 ± 31, 26 ± 41, and 28 ± 22 nM, respectively. Maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 76 ± 8.8, 73 ± 15, and 77 ± 13, respectively. To evaluate the specific IRAK4-dependent signaling pathways mediating this response, hMDMs were pretreated with inhibitors of TLR4 (TAK242) and IL-1R (IL-1RA) prior to stimulation with RA synovial fluid. Both TAK242 and IL-1RA inhibited proinflammatory cytokine production. For TAK242, maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 39 ± 25, 48 ± 24, and 50 ± 21, respectively. For IL-1RA maximal percent suppression ± SD of IL-6, IL-8, and TNFα were 18 ± 18, 20 ± 23, and 16 ± 18, respectively. The broad range of inhibition across each stimulation highlights the complexity and variability in the signaling pathways mediating proinflammatory cytokine production from hMDMs stimulated with RA synovial fluid, but demonstrates that RA synovial fluid can stimulate proinflammatory cytokine production in hMDMs, at least partly, through IRAK4-dependent pathways.Conclusion:This work demonstrates that IRAK4 inhibition can suppress proinflammatory cytokine production from macrophages stimulated with synovial fluid from patients with RA and supports a potential pathophysiological role for IRAK4 in perpetuating chronic inflammation in RA.References:[1]Smolen JS, et al.Nat Rev Dis Primers.2018;4:18001.[2]Udalova IA, et al.Nat Rev Rheumatol.2016;12(8):472-485.[3]Joosten LAB, et al.Nat Rev Rheumatol.2016;12(6):344-357.[4]Huang QQ, Pope RM.Curr Rheumatol Rep.2009;11(5):357-364.[5]Roh JS, Sohn DH.Immune Netw.2018;18(4):e27.[6]Sacre SM, et al.Am J Pathol.2007;170(2):518-525.[7]Ultaigh SNA, et al.Arthritis Res Ther.2011;13(1):R33.[8]Bottini N, Firestein GS.Nat Rev Rheumatol.2013;9(1):24-33.[9]Firestein GS, McInnes IB.Immunity.2017;46(2):183-196.[10]Janssens S, Beyaert R.Mol Cell.2003;11(2):293-302.Disclosure of Interests:Adam Yadon Employee of: Gilead, Debbie Ruelas Employee of: Gilead, Gundula Min-Oo Employee of: Gilead, James Taylor Employee of: Gilead, Matthew R. Warr Employee of: Gilead


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 876.2-877
Author(s):  
S. Tsujimoto ◽  
M. Shigesaka ◽  
A. Tanaka ◽  
Y. Ozaki ◽  
T. Ito ◽  
...  

Background:Rheumatoid arthritis (RA) is a common autoimmune disease. It is characterized by systemic synovitis with bone erosion and joint cartilage degradation(1). Production of autoantibody is important for autoimmune disease. Cytokines play crucial roles in its pathogenesis(2). SNP distribution varies between races. Few studies have examined SNP targeted at Japanese patients. The analysis of cytokine gene polymorphisms is important factor of pathophysiology and treatment.Objectives:This analysis was aimed to investigate the association between cytokine gene polymorphisms and autoantibody and therapeutic response in Japanese RA patients.Methods:This study subjects consisted of 100 RA patients and 50 healthy controls. We extracted data on patient sex, age, disease duration, rheumatoid factor (RF), anti cyclic citrullinated peptide (anti-CCP) antibody and therapeutic response including methotrexate (MTX) and biological DMARDs. Genomic DNA was isolated from peripheral blood, these were genotyped for TNFα, TGFβ1, IL-6, IL-10 and IFNγ polymorphisms. We analyzed these data using a chi-square test.Results:IL-10 (-819 C/T and -592 C/A) revealed that there were significant decrease in the frequency of IL-10 (-819) CC genotype and (-592) CC genotype as compared to controls in RA patients. Genotyping of IL-10 showed that there was significant decrease ACC/ACC genotype (Table 1).IFNγ (+874 A/T) revealed that there was significant decrease in the frequency of TT genotype as compared to controls (Table 1).No significant differences in TNFα, TGFβ1and IL-6 genotypes and alleles frequency were observed between RA patients and control.TGFβ1(+869 A/T) in patients with anti-CCP antibody positive revealed that there was significant decrease in the frequency of TT genotype as compared to patients with anti-CCP antibody negative (Table 2).No significant association between RF and any cytokine gene polymorphism.Analyzing cytokine gene polymorphisms could be useful for treatment with MTX and biological DMARDs.Table 1.Table 2.Conclusion:IL-10 (-819 C/T, -592 C/A) and IFNγ (+874 A/T) polymorphism might be related to RA in Japanese population. In addition, TGFβ1(+869 A/T) polymorphism might be associated with the production of anti-CCP antibody. These results suggest that the analyzing cytokine gene polymorphisms may offer promise as useful factors in the choice of treatment for Japanese RA patients.References:[1] Scott DL, Wolfe F, Huizinga TW. Rheumatoid arthritis. Lancet. 2010; 376: 1094–108.[2] McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007 Jun;7(6):429-42.Disclosure of Interests:None declared


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chun-Ying Wang ◽  
Martin Lempp ◽  
Niklas Farke ◽  
Stefano Donati ◽  
Timo Glatter ◽  
...  

AbstractSynthetic metabolic pathways are a burden for engineered bacteria, but the underlying mechanisms often remain elusive. Here we show that the misregulated activity of the transcription factor Cra is responsible for the growth burden of glycerol overproducing E. coli. Glycerol production decreases the concentration of fructose-1,6-bisphoshate (FBP), which then activates Cra resulting in the downregulation of glycolytic enzymes and upregulation of gluconeogenesis enzymes. Because cells grow on glucose, the improper activation of gluconeogenesis and the concomitant inhibition of glycolysis likely impairs growth at higher induction of the glycerol pathway. We solve this misregulation by engineering a Cra-binding site in the promoter controlling the expression of the rate limiting enzyme of the glycerol pathway to maintain FBP levels sufficiently high. We show the broad applicability of this approach by engineering Cra-dependent regulation into a set of constitutive and inducible promoters, and use one of them to overproduce carotenoids in E. coli.


Sign in / Sign up

Export Citation Format

Share Document