scholarly journals Integrated Analysis of Oncogenic Networks in Colorectal Cancer Identifies GUCA2A as a Molecular Marker

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hui Zhang ◽  
Yuanyuan Du ◽  
Zhuo Wang ◽  
Rui Lou ◽  
Jianzhong Wu ◽  
...  

Colorectal cancer (CRC) is one of the most common and deadly malignancies in the world. In China, the morbidity rate of CRC has increased during the period 2000 to 2011. Biomarker detection for early CRC diagnosis can effectively reduce the mortality of patients with CRC. To explore the underlying mechanisms of effective biomarkers and identify more of them, we performed weighted correlation network analysis (WGCNA) on a GSE68468 dataset generated from 378 CRC tissue samples. We screened the gene set (module), which was significantly associated with CRC histology, and analyzed the hub genes. The key genes were identified by obtaining six colorectal raw data (i.e., GSE25070, GSE44076, GSE44861, GSE21510, GSE9348, and GSE21815) from the GEO database (https://www.ncbi.nlm.nih.gov/geo). The robust differentially expressed genes (DEGs) in all six datasets were calculated and obtained using the library “RobustRankAggreg” package in R 3.5.1. An integrated analysis of CRC based on the top 50 downregulated DEGs and hub genes in the red module from WGCNA was conducted, and the intersecting genes were screened. The Kaplan–Meier plot was further analyzed, and the genes associated with CRC prognosis based on patients from the TCGA database were determined. Finally, we validated the candidate gene in our clinical CRC specimens. We postulated that the candidate genes screened from the database and verified by our clinical pathological data may contribute to understanding the molecular mechanisms of tumorigenesis and may serve as potential biomarkers for CRC diagnosis and treatment.

Author(s):  
Dan Song ◽  
Ming Guo ◽  
Shuai Xu ◽  
Xiaotian Song ◽  
Bin Bai ◽  
...  

Abstract Background Pseudouridine synthase (PUS) 7 is a member of the PUS family that catalyses pseudouridine formation. It has been shown to be involved in intellectual development and haematological malignancies. Nevertheless, the role and the underlying molecular mechanisms of PUS7 in solid tumours, such as colorectal cancer (CRC), remain unexplored. This study elucidated, for the first time, the role of PUS7 in CRC cell metastasis and the underlying mechanisms. Methods We conducted immunohistochemistry, qPCR, and western blotting to quantify the expression of PUS7 in CRC tissues as well as cell lines. Besides, diverse in vivo and in vitro functional tests were employed to establish the function of PUS7 in CRC. RNA-seq and proteome profiling analysis were also applied to identify the targets of PUS7. PUS7-interacting proteins were further uncovered using immunoprecipitation and mass spectrometry. Results Overexpression of PUS7 was observed in CRC tissues and was linked to advanced clinical stages and shorter overall survival. PUS7 silencing effectively repressed CRC cell metastasis, while its upregulation promoted metastasis, independently of the PUS7 catalytic activity. LASP1 was identified as a downstream effector of PUS7. Forced LASP1 expression abolished the metastasis suppression triggered by PUS7 silencing. Furthermore, HSP90 was identified as a client protein of PUS7, associated with the increased PUS7 abundance in CRC. NMS-E973, a specific HSP90 inhibitor, also showed higher anti-metastatic activity when combined with PUS7 repression. Importantly, in line with these results, in human CRC tissues, the expression of PUS7 was positively linked to the expression of HSP90 and LASP1, and patients co-expressing HSP90/PUS7/LASP1 showed a worse prognosis. Conclusions The HSP90-dependent PUS7 upregulation promotes CRC cell metastasis via the regulation of LASP1. Thus, targeting the HSP90/PUS7/LASP1 axis may be a novel approach for the treatment of CRC.


2020 ◽  
Author(s):  
Chenhe Yao ◽  
Xiaoling Zhao ◽  
Xuemeng Shang ◽  
Binghan Jia ◽  
Shuaijie Dou ◽  
...  

Abstract Background: Adrenocortical carcinoma (ACC) is a heterogeneous and rare malignant tumor associated with a poor prognosis. The molecular mechanisms of ACC remain elusive and more accurate biomarkers for the prediction of prognosis are needed.Methods: In this study, integrative profiling analyses were performed to identify novel hub genes in ACC to provide promising targets for future investigation. Three gene expression profiling datasets in the GEO database were used for the identification of overlapped differentially expressed genes (DEGs) following the criteria of adj.P.Value<0.05 and |log2 FC|>0.5 in ACC. Novel hub genes were screened out following a series of processes: the retrieval of DEGs with no known associations with ACC on Pubmed, then the cross-validation of expression values and significant associations with overall survival in the GEPIA2 and starBase databases, and finally the prediction of gene-tumor association in the GeneCards database.Results: Four novel hub genes were identified and two of them, TPX2 and RACGAP1, were positively correlated with the staging. Interestingly, co-expression analysis revealed that the association between TPX2 and RACGAP1 was the strongest and that the expression of HOXA5 was almost completely independent of that of RACGAP1 and TPX2. Furthermore, the PPI network consisting of four novel genes and seed genes in ACC revealed that HOXA5, TPX2, and RACGAP1 were all associated with TP53. Conclusions: This study identified four novel hub genes (TPX2, RACHAP1, HXOA5 and FMO2) that may play crucial roles in the tumorigenesis and the prediction of prognosis of ACC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maryam Heidari ◽  
Abbas Pakdel ◽  
Mohammad Reza Bakhtiarizadeh ◽  
Fariba Dehghanian

Johne’s disease is a chronic infection of ruminants that burdens dairy herds with a significant economic loss. The pathogenesis of the disease has not been revealed clearly due to its complex nature. In order to achieve deeper biological insights into molecular mechanisms involved in MAP infection resulting in Johne’s disease, a system biology approach was used. As far as is known, this is the first study that considers lncRNAs, TFs, and mRNAs, simultaneously, to construct an integrated gene regulatory network involved in MAP infection. Weighted gene coexpression network analysis (WGCNA) and functional enrichment analysis were conducted to explore coexpression modules from which nonpreserved modules had altered connectivity patterns. After identification of hub and hub-hub genes as well as TFs and lncRNAs in the nonpreserved modules, integrated networks of lncRNA-mRNA-TF were constructed, and cis and trans targets of lncRNAs were identified. Both cis and trans targets of lncRNAs were found in eight nonpreserved modules. Twenty-one of 47 nonpreserved modules showed significant biological processes related to the immune system and MAP infection. Some of the MAP infection’s related pathways in the most important nonpreserved modules comprise “positive regulation of cytokine-mediated signaling pathway,” “negative regulation of leukocyte migration,” “T-cell differentiation,” “neutrophil activation,” and “defense response.” Furthermore, several genes were identified in these modules, including SLC11A1, MAPK8IP1, HMGCR, IFNGR1, CMPK2, CORO1A, IRF1, LDLR, BOLA-DMB, and BOLA-DMA, which are potentially associated with MAP pathogenesis. This study not only enhanced our knowledge of molecular mechanisms behind MAP infection but also highlighted several promising hub and hub-hub genes involved in macrophage-pathogen interaction.


2021 ◽  
Author(s):  
Hongpeng Fang ◽  
Zhansen Huang ◽  
Xianzi Zeng ◽  
Jiaming Wan ◽  
Jieying Wu ◽  
...  

Abstract Background As a common malignant cancer of the urinary system, the precise molecular mechanisms of bladder cancer remain to be illuminated. The purpose of this study was to identify core genes with prognostic value as potential oncogenes for the diagnosis, prognosis or novel therapeutic targets of bladder cancer. Methods The gene expression profiles GSE3167 and GSE7476 were available from the Gene Expression Omnibus (GEO) database. Next, PPI network was built to filter the hub gene through the STRING database and Cytoscape software and GEPIA and Kaplan-Meier plotter were implemented. Frequency and type of hub genes and sub groups analysis were performed in cBioportal and ULCAN database. Finally,We used RT-qPCR to confirm our results. Results Totally, 251 DEGs were excavated from two datasets in our study. We only founded high expression of SMC4, TYMS, CCNB1, CKS1B, NUSAP1 and KPNA2 was associated with worse outcomes in bladder cancer patients and no matter from the type of mutation or at the transcriptional level of hub genes, the tumor showed a high form of expression. However, only the expression of SMC4,CCNB1and CKS1B remained changed between the cancer and the normal samples in our results of RT-qPCR. Conclusion In conclusion,These findings indicate that the SMC4,CCNB1 and CKS1B may serve as critical biomarkers in the development and poor prognosis.


2020 ◽  
Author(s):  
Jing Xu ◽  
Yuejing Yang

Abstract Objective To explore the molecular mechanism and search for the candidate biomarkers with predictive and prognostic potentiality that detectable in the whole blood of STEMI patients and post-STEMI HF patients.Methods In this study, we downloaded GSE60993, GSE61144, GSE66360, and GSE59867 datasets from the NCBI-GEO database. Differentially expressed genes (DEGs) of the datasets were investigated using R. Gene ontology and pathway enrichment were performed via ClueGO, CluePedia, and DAVID database. Protein interaction network was constructed via STRING. Enriched hub genes were analyzed by Cytoscape software. LASSO logistic regression algorithm and ROC analysis were performed to build machine learning models for predicting STEMI. Hub genes for further validated in post-STEMI HF patients from GSE59867.Results We identified 90 up-regulated DEGs and 9 down-regulated DEGs convergence in the three datasets (|log2FC| ≥ 0.8 and adjusted p value < 0.05). They were mainly enriched in Gene Ontology terms relating to cytokine secretion, pattern recognition receptors signaling pathway, and immune cells activation. A cluster of 8 genes including ITGAM, CLEC4D, SLC2A3, BST1, MCEMP1, PLAUR, GPR97, and MMP25 was found to be significant. A machine learning model built by SLC2A3, CLEC4D, GPR97, PLAUR, and BST1 exerted great value for STEMI prediction. Besides, ITGAM and BST1 might be candidate prognostic biomarkers for post-STEMI HF.Conclusions We re-analyzed the integrated transcriptomic signature of STEMI patients showing predictive potentiality and revealed new insights and specific prospective biomarkers for STEMI risk stratification and HF development.


2018 ◽  
Vol 52 (1) ◽  
pp. 1702665 ◽  
Author(s):  
Brian J. Sandri ◽  
Adam Kaplan ◽  
Shane W. Hodgson ◽  
Mark Peterson ◽  
Svetlana Avdulov ◽  
...  

Chronic obstructive pulmonary disease (COPD) is a known risk factor for developing lung cancer but the underlying mechanisms remain unknown. We hypothesise that the COPD stroma contains molecular mechanisms supporting tumourigenesis.We conducted an unbiased multi-omic analysis to identify gene expression patterns that distinguish COPD stroma in patients with or without lung cancer. We obtained lung tissue from patients with COPD and lung cancer (tumour and adjacent non-malignant tissue) and those with COPD without lung cancer for profiling of proteomic and mRNA (both cytoplasmic and polyribosomal). We used the Joint and Individual Variation Explained (JIVE) method to integrate and analyse across the three datasets.JIVE identified eight latent patterns that robustly distinguished and separated the three groups of tissue samples (tumour, adjacent and control). Predictive variables that associated with the tumour, compared to adjacent stroma, were mainly represented in the transcriptomic data, whereas predictive variables associated with adjacent tissue, compared to controls, were represented at the translatomic level. Pathway analysis revealed extracellular matrix and phosphatidylinositol-4,5-bisphosphate 3-kinase–protein kinase B signalling pathways as important signals in the tumour adjacent stroma.The multi-omic approach distinguishes tumour adjacent stroma in lung cancer and reveals two stromal expression patterns associated with cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Fangyu Chen ◽  
Jiahang Song ◽  
Ziqi Ye ◽  
Bing Xu ◽  
Hongyan Cheng ◽  
...  

BackgroundLung adenocarcinoma (LUAD) is a leading malignancy and has a poor prognosis over the decades. LUAD is characterized by dysregulation of cell cycle. Immunotherapy has emerged as an ideal option for treating LUAD. Nevertheless, optimal biomarkers to predict outcomes of immunotherapy is still ill-defined and little is known about the interaction of cell cycle-related genes (CCRGs) and immunity-related genes (IRGs).MethodsWe downloaded gene expression and clinical data from TCGA and GEO database. LASSO regression and Cox regression were used to construct a differentially expressed CCRGs and IRGs signature. We used Kaplan-Meier analysis to compare survival of LUAD patients. We constructed a nomogram to predict the survival and calibration curves were used to evaluate the accuracy.ResultsA total of 61 differentially expressed CCRGs and IRGs were screened out. We constructed a new risk model based on 8 genes, including ACVR1B, BIRC5, NR2E1, INSR, TGFA, BMP7, CD28, NUDT6. Subgroup analysis revealed the risk model accurately predicted the overall survival in LUAD patients with different clinical features and was correlated with immune cells infiltration. A nomogram based on the risk model exhibited excellent performance in survival prediction of LUAD.ConclusionsThe 8 gene survival signature and nomogram in our study are effective and have potential clinical application to predict prognosis of LUAD.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4188
Author(s):  
Elena Lastraioli ◽  
Federico Alessandro Ruffinatti ◽  
Francesco Di Costanzo ◽  
Cesare Sala ◽  
Luca Munaron ◽  
...  

Because of its high incidence and poor prognosis, colorectal cancer (CRC) represents an important health issue in several countries. As with other carcinomas, the so-called tumour microenvironment (TME) has been shown to play key roles in CRC progression and related therapeutical outcomes, even though a deeper understanding of the underlying molecular mechanisms is needed to devise new treatment strategies. For some years now, omics technologies and consolidated bioinformatics pipelines have allowed scientists to access large amounts of biologically relevant information, even when starting from small tissue samples; thus, in order to shed new light upon the role of the TME in CRC, we compared the gene expression profiles of 6 independent tumour tissues (all progressed towards metastatic disease) to the expression profile of the surrounding stromata. To do this, paraffin-embedded whole tissues were first microdissected to obtain samples enriched with tumour and stromal cells, respectively. Afterwards, RNA was extracted and analysed using a microarray-based approach. A thorough bioinformatics analysis was then carried out to identify transcripts differentially expressed between the two groups and possibly enriched functional terms. Overall, 193 genes were found to be significantly downregulated in tumours compared to the paired stromata. The functional analysis of the downregulated gene list revealed three principal macro areas of interest: the extracellular matrix, cell migration, and angiogenesis. Conversely, among the upregulated genes, the main alterations detected by the functional annotation were related to the ribosomal proteins (rProteins) of both the large (60S) and small (40S) subunits of the cytosolic ribosomes. Subsequent gene set enrichment analysis (GSEA) confirmed the massive overexpression of most cytosolic—but not mitochondrial—ribosome rProteins.


2021 ◽  
Author(s):  
Jinbao Yin ◽  
Chen Lin ◽  
Meng Jiang ◽  
Xinbin Tang ◽  
Danlin Xie ◽  
...  

Abstract As a highly prevalent disease among women worldwide, breast cancer remains in urgent need of further elucidation its molecular mechanisms to improve the patient outcomes. Identifying hub genes involved in the pathogenesis and progression of breast cancer can potentially help to unveil mechanism and also provide novel diagnostic and prognostic markers. In this study, we integrated multiple bioinformatic methods and RNA in situ detection technology to identify and validate hub genes. EZH2 was recognized as a key gene by PPI network analysis. CENPL, ISG20L2, LSM4, MRPL3 were identified as four novel hub genes through the WGCNA analysis and literate search. Among these, many studies on EZH2 in breast cancer have been reported, but no studies are related to the roles of CENPL, ISG20L2, MRPL3 and LSM4 in breast cancer. These four novel hub genes were up-regulated in tumor tissues and associated with cancer progression. The receiver operating characteristic (ROC) analysis and Kaplan-Meier survival analysis indicated that these four hub genes are promising candidate genes that can serve as diagnostic and prognostic biomarkers for breast cancer. Moreover, these four newly identified hub genes as aberrant molecules in the maintenance of breast cancer development, their exact functional mechanisms deserve further in-depth study.


2020 ◽  
Author(s):  
Weiyu Feng ◽  
Baodong Li ◽  
Jinbang Wang ◽  
Huiliang Zhang ◽  
Yonggang Liu ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) are tumor-related regulators and have been found to be involved in the underlying molecular mechanisms of colorectal cancer (CRC). However, the role of lncRNA LINC00115 during CRC progression is not entirely elucidated. Methods The expression of LINC00115 was analyzed in paired CRC tissue samples and its clinical significance was evaluated. The biological effects on CRC cells proliferation, apoptosis, migration, invasion and PI3K/AKT/mTOR signaling were assessed by Cell Counting Kit-8 assay, Transwell assay, flow cytometry analysis and Western blot, respectively. The regulatory relationship between LINC00115 and miR-489-3p was determined by dual-luciferase reporter assays. Results LINC00115 was significantly overexpressed in CRC and its overexpression predicted poor outcome of the patients. Downregulation of LINC00115 markedly inhibited CRC cell proliferation, increased cell apoptosis, and suppressed cell migration and invasion. Moreover, downregulation of LINC00115 led to the inactivation of PI3K/AKT/mTOR signaling. Bioinformatics analysis identified miR-489-3p as a candidate target of LINC00115. Furthermore, we revealed an inverse correlation between LINC00115 and miR-489-3p in CRC tissues. miR-489-3p might directly target LINC00115 and downregulation of miR-489-3p could rescue the biological effects induced by the absence of LINC0015. Conclusion LINC00115 serves as an excellent oncogene of CRC metastasis, the deeper understanding of LINC00115/miR-489-3p axis might provide potential therapeutic targets for CRC metastasis.


Sign in / Sign up

Export Citation Format

Share Document