scholarly journals Silver Nanoparticles Synthesized with Rumex hymenosepalus: A Strategy to Combat Early Mortality Syndrome (EMS) in a Cultivated White Shrimp

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Francisco Javier Alvarez-Cirerol ◽  
Marco Antonio López-Torres ◽  
Ericka Rodríguez-León ◽  
César Rodríguez-Beas ◽  
Aaron Martínez-Higuera ◽  
...  

Early Mortality Syndrome (EMS) or Acute Hepatopancreatic Necrosis Syndrome (AHPNS) is a disease produced by gram-negative bacteria Vibrio parahaemolyticus (V. parahaemolyticus), which has caused declines in worldwide production of a white shrimp Litopenaeus vannamei (L. vannamei). In this work, we propose the implementation of silver nanoparticles (AgNPs) synthesized with Rumex hymenosepalus (Rh) extract as an alternative on V. parahaemolyticus control. AgNPs were characterized by UV-Vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). AgNP mean sizes by DLS were 80.82±1.16 nm and sizes between 2 and 10 nm by TEM, with a zeta potential of −47.72±1.05 mV. This study evaluated AgNPs and Rh antimicrobial capacity on V. parahaemolyticus at different concentrations; the minimum inhibitory concentration (MIC) found was 25 μg/mL for AgNPs and 220 μg/mL for Rh. Additionally, were carried out time-kill curves and reactive oxygen species (ROS) generation for 1 and 4 MIC. Both concentrations (MIC) were tested for toxicity on Artemia nauplii from Artemia franciscana (A. franciscana), because nauplii were used as biocarriers for AgNPs and Rh extract on L. vannamei. Once the shrimp were treated, they were challenged with Vibrio infection and it was found that those who were treated with both agents showed greater survival than the control. V. parahaemolyticus and postlarval samples were taken from the bioassay and fixed and prepared for TEM and SEM in order to search NPs in internal structure of bacteria and the hepatopancreatic area of shrimps; AgNPs were detected in both cases. AgNPs and Rh extract show antibacterial properties on the infected shrimp with V. parahaemolyticus. The action mechanisms are interaction with the bacterial membrane and ROS generation; these effects are produced by both agents.

2014 ◽  
Vol 23 ◽  
pp. 27-35
Author(s):  
Jyothi Hiremath ◽  
Vandana Rathod ◽  
Shivaraj Ninganagouda ◽  
Dattu Singh ◽  
K. Prema

Nanotechnology is a field that is burgeoning day by day, making an impact in all spheres of human life. Biological methods of synthesis have paved way for the “greener synthesis” of nanoparticles and these have proven to be better methods due to slower kinetics, they offer better manipulation and control over crystal growth and their stabilization. In this context we have investigated extracellular biosynthesis of silver nanoparticles (AgNPs) using cell-free extract of Rhizopus spp.. Formation of AgNPs was indicated by the change in the colour of the cellfree extract from yellow to dark brown under static condition after 48 hrs of incubation. Characterization of AgNPs was carried out by UV-Vis Spectroscopy which gave sharp plasmon resonance peak at 429 nm corresponding to spherical shaped nanoparticles. Transmission electron microscopy (TEM) micrograph showed formation of well-dispersed AgNPs in the range of 25-50 nm. Scanning electron microscopy (SEM) showed the particles to be uniformly dispersed without agglomeration with smooth morphology. EDS showed the presence of elemental silver at 3kev. X-ray diffraction (XRD)-spectrum of the AgNPs exhibited 2θ¸ values corresponding to nanocrystal. These biosynthesized AgNPs were used to study their antimicrobial activity against Multi-drug resistant (MDR) E. coli strains, by Agar diffusion method. Zone of inhibition was measured. Synthesis of nanosized particles with antibacterial properties, which are called "nanoantibiotics", is of great interest in the development of new pharmaceutical products.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Sedighe Khodadadi ◽  
Nafiseh Mahdinezhad ◽  
Bahman Fazeli-Nasab ◽  
Mohammad Javad Heidari ◽  
Baratali Fakheri ◽  
...  

Objective. Vaccinium genus plants have medicinal value, of which Vaccinium arctostaphylos (Caucasian whortleberry or Qare-Qat in the local language) is the only available species in Iran. Public tendency to use herbal remedies and natural products such as synthesized nanoparticles is increasing due to the proof of the destructive side effects of chemical drugs. Nanosilver products have been effective against more than 650 microbe types. This study was aimed at assessing the possibility of green synthesis of silver nanoparticles using Vaccinium arctostaphylos aqueous extract and at evaluating its antibacterial properties, as well. Materials and Methods. In order to synthesize silver nanoparticles, different volumes of Vaccinium arctostaphylos aqueous extract (3, 5, 10, 15, and 30 ml) were assessed with different silver nitrate solution concentrations (0.5, 1, 3, 5, and 10 mM) and different reaction time durations (1, 3, 5, 10, and 20 minutes) at room temperature using a rotary shaker with a speed of 150 rpm. Ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction analysis (XRD), Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) were carried out. The antibacterial activity of the aqueous extract and the synthesized nanoparticles was evaluated, as well. Results. Silver nanoparticle formation process was confirmed with XRD analysis, transmission electron microscopy (TEM), and FTIR spectroscopy. The UV-Vis spectroscopy of silver colloidal nanoparticles showed a surface plasmon resonance peak at 443 nm under optimal conditions (3 ml aqueous extract volume, 1 mM silver nitrate solution concentration, and 3 min reaction time under sunlight exposure). The reduction of silver ions to silver nanoparticles in solution was confirmed, as well. Based on X-ray diffraction analysis, the size of silver nanoparticles was in the range of 7-16 nm. TEM images showed an even distribution of silver nanoparticles, with a spherical shape. FTIR spectroscopy demonstrated the presence of different functional groups of oxygenated compounds such as carboxyl, hydroxyl, and nitrogenous groups. The antibacterial properties of the synthesized nanoparticles were confirmed. Conclusion. The synthesized nanoparticles showed more antibacterial properties against gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) than gram-negative ones (Escherichia coli and Salmonella enteritidis).


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2269
Author(s):  
Angelo Nicosia ◽  
Fabiana Vento ◽  
Anna Lucia Pellegrino ◽  
Vaclav Ranc ◽  
Anna Piperno ◽  
...  

Nanocomposites obtained by the decoration of graphene-based materials with silver nanoparticles (AgNPs) have received increasing attention owing to their antimicrobial activity. However, the complex synthetic methods for their preparation have limited practical applications. This study aims to synthesize novel NanoHybrid Systems based on graphene, polymer, and AgNPs (namely, NanoHy-GPS) through an easy microwave irradiation approach free of reductants and surfactants. The polymer plays a crucial role, as it assures the coating layer/substrate compatibility making the platform easily adaptable for a specific substrate. AgNPs’ loading (from 5% to 87%) can be tuned by the amount of Silver salt used during the microwave-assisted reaction, obtaining spherical AgNPs with average sizes of 5–12 nm homogeneously distributed on a polymer-graphene nanosystem. Interestingly, microwave irradiation partially restored the graphene sp2 network without damage of ester bonds. The structure, morphology, and chemical composition of NanoHy-GPS and its subunits were characterized by means of UV-vis spectroscopy, thermal analysis, differential light scattering (DLS), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray analysis (EDX), Atomic Force Microscopy (AFM), and High-Resolution Transmission Electron Microscopy (HRTEM) techniques. A preliminary qualitative empirical assay against the typical bacterial load on common hand-contacted surfaces has been performed to assess the antibacterial properties of NanoHy-GPS, evidencing a significative reduction of bacterial colonies spreading.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2382 ◽  
Author(s):  
Muhammad Jamshed Khan ◽  
Suriya Kumari ◽  
Kamyar Shameli ◽  
Jinap Selamat ◽  
Awis Qurni Sazili

Nanoparticles (NPs) are, frequently, being utilized in multi-dimensional enterprises. Silver nanoparticles (AgNPs) have attracted researchers in the last decade due to their exceptional efficacy at very low volume and stability at higher temperatures. Due to certain limitations of the chemical method of synthesis, AgNPs can be obtained by physical methods including sun rays, microwaves and ultraviolet (UV) radiation. In the current study, the synthesis of pullulan mediated silver nanoparticles (P-AgNPs) was achieved through ultraviolet (UV) irradiation, with a wavelength of 365 nm, for 96 h. P-AgNPs were formed after 24 h of UV-irradiation time and expressed spectra maxima as 415 nm, after 96 h, in UV-vis spectroscopy. The crystallographic structure was “face centered cubic (fcc)” as confirmed by powder X-ray diffraction (PXRD). Furthermore, high resolution transmission electron microscopy (HRTEM) proved that P-AgNPs were covered with a thin layer of pullulan, with a mean crystalline size of 6.02 ± 2.37. The average lattice fringe spacing of nanoparticles was confirmed as 0.235 nm with quasi-spherical characteristics, by selected area electron diffraction (SAED) analysis. These green synthesized P-AgNPs can be utilized efficiently, as an active food and meat preservative, when incorporated into the edible films.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4041
Author(s):  
Adriana Cecilia Csakvari ◽  
Cristian Moisa ◽  
Dana G. Radu ◽  
Leonard M. Olariu ◽  
Andreea I. Lupitu ◽  
...  

Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L−1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV−VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.


Author(s):  
S C Joshi ◽  
Utkarsh Kaushik ◽  
Aproova Upadhyaya ◽  
Priyanka Sharma

ABSTRACTObjective: The synthesis of nanoparticles from biological processes is evolving a new era of research interests in nanotechnology. Silver nanoparticlesare usually synthesized by chemicals and physical method, which are quite toxic and flammable in nature. This study deals with an environmentfriendly biosynthesis process of antibacterial silver nanoparticles using Momordica charantia fruit.Methods: AgNO3 (5 mM) was allowed to react with fruit extract of M. charantia. Biosynthesis of AgNPs was optimized by changing temperature,pH, and solvent. The silver nanoparticles so formed were characterized using ultraviolet-visible (UV-VIS) spectroscopy, Fourier transform infraredspectroscopy (FTIR), dynamic light scattering (DLS), atomic force microscope (AFM), and scanning electron microscopy (SEM).Results: UV-VIS spectra show absorption peak between 420 and 430 nm. The FTIR analysis showed the alcoholic, lactam, and nitro group presentin the plant extract, which were responsible for the reduction in AgNPs. The SEM images showed the size distribution of the nanoparticles and theaverage size was found to be 50-100 nm. By DLS analysis and AFM analysis, average sizes of the silver nanoparticles were of 150 nm. The results ofthese analyses confirmed the formation of silver nanoparticles. Silver nanoparticles were tested against Bacillus cereus and Staphylococcus epidermidisstrains using disc diffusion method and were found to be effective.Conclusion: Silver nanoparticles so synthesized in this study using fruit extract of M. charantia are simple, easy, and effective technique of nanoparticlesproduction.Keywords: Silver nanoparticles, Momordica charantia, Optimization, Antibacterial, Atomic force microscope, Scanning electron microscopy.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2018 ◽  
Vol 78 (1) ◽  
pp. 235-246 ◽  
Author(s):  
D. Dixit ◽  
D. Gangadharan ◽  
K. M. Popat ◽  
C. R. K. Reddy ◽  
M. Trivedi ◽  
...  

Abstract A simple and eco-friendly method for the synthesis of hybrid bead silver nanoparticles (AgNPs) employing the aqueous extract derived from natural and renewable source namely tropical benthic green seaweed Ulva flexuosa was developed. This route involves the reduction of Ag+ ions anchored onto macro porous methacrylic acid copolymer beads to AgNPs for employing them as antibacterial agents for in vitro water disinfection. The seaweed extract itself acts as a reducing and stabilizing agent and requires no additional surfactant or capping agent for forming the AgNPs. The nanoparticles were analyzed using high-resolution transmission electron microscopy, UV–Vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray analysis and inductively coupled plasma optical emission spectroscopy. The study elucidates that such biologically synthesized AgNPs exhibit potential antibacterial activity against two Gram positive (Bacillus subtilis, Staphylococcus aureus) and two Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains tested. The bacterial count in treated water was reduced to zero for all the strains. Atomic force microscopy was performed to confirm the pre- and post-state of the bacteria with reference to their treatment with AgNPs. Attributes like facile environment-friendly procedure, stability and high antibacterial potency propel the consideration of these AgNPs as promising antibacterial entities.


Antibiotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 68 ◽  
Author(s):  
Mahsa Eshghi ◽  
Hamideh Vaghari ◽  
Yahya Najian ◽  
Mohammad Najian ◽  
Hoda Jafarizadeh-Malmiri ◽  
...  

Silver nanoparticles (Ag NPs) were synthesized using Juglans regia (J. regia) leaf extract, as both reducing and stabilizing agents through microwave irradiation method. The effects of a 1% (w/v) amount of leaf extract (0.1–0.9 mL) and an amount of 1 mM AgNO3 solution (15–25 mL) on the broad emission peak (λmax) and concentration of the synthesized Ag NPs solution were investigated using response surface methodology (RSM). Fourier transform infrared analysis indicated the main functional groups existing in the J. regia leaf extract. Dynamic light scattering, UV-Vis spectroscopy and transmission electron microscopy were used to characterize the synthesized Ag NPs. Fabricated Ag NPs with the mean particle size and polydispersity index and maximum concentration and zeta potential of 168 nm, 0.419, 135.16 ppm and −15.6 mV, respectively, were obtained using 0.1 mL of J. regia leaf extract and 15 mL of AgNO3. The antibacterial activity of the fabricated Ag NPs was assessed against both Gram negative (Escherichia coli) and positive (Staphylococcus aureus) bacteria and was found to possess high bactericidal effects.


Pathogens ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 160 ◽  
Author(s):  
Temoor Ahmed ◽  
Muhammad Shahid ◽  
Muhammad Noman ◽  
Muhammad Bilal Khan Niazi ◽  
Faisal Mahmood ◽  
...  

Amongst serious biotic factors deteriorating crop yield, the most destructive pathogen of rice is Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial leaf blight (BLB) disease. This study involved targeted use of biogenic silver nanoparticles (AgNPs) to control BLB in order to cope with the disadvantages of chemical disease control. AgNPs were biologically synthesized from natively isolated Bacillus cereus strain SZT1, which was identified through 16S rRNA gene sequence analysis. Synthesis of AgNPs in bacterial culture supernatant was confirmed through UV-VIS spectroscopy. Fourier transform infrared spectroscopy (FTIR) confirmed that the existence of AgNPs was stabilized with proteins and alcoholic groups. X-ray diffraction (XRD) data revealed the crystalline nature and imaging with scanning electron microscopy (SEM) and transmission electron microscopy (TEM), showing the spherical shape of AgNPs with particle sizes ranging from 18 to 39 nm. The silver presence in AgNPs was further confirmed by energy dispersive spectra. Biogenic AgNPs showed substantial antibacterial activity (24.21 ± 1.01 mm) for Xoo. In a pot experiment, AgNPs were found to be effective weapons for BLB by significantly increasing the plant biomass with a decreased cellular concentration of reactive oxygen species and increased concentration of antioxidant enzyme activity.


Sign in / Sign up

Export Citation Format

Share Document