scholarly journals Long Noncoding RNA SOX2-OT Exacerbates Hypoxia-Induced Cardiomyocytes Injury by Regulating miR-27a-3p/TGFβR1 Axis

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Guang Yang ◽  
Chunsheng Lin

Background. Myocardial infarction (MI) was a severe cardiovascular disease resulted from acute, persistent hypoxia, or ischemia condition. Additionally, MI generally led to heart failure, even sudden death. A multitude of research studies proposed that long noncoding RNAs (lncRNAs) frequently participated in the regulation of heart diseases. The specific function and molecular mechanism of SOX2-OT in MI remained unclear. Aim of the Study. The current research was aimed to explore the role of SOX2-OT in MI. Methods. Bioinformatics analysis (DIANA tools and Targetscan) and a wide range of experiments (CCK-8, flow cytometry, RT-qPCR, luciferase reporter, RIP, caspase-3 activity, trans-well, and western blot assays) were adopted to investigate the function and mechanism of SOX2-OT. Results. We discovered that hypoxia treatment decreased cell viability but increased cell apoptosis. Besides, lncRNA SOX2-OT expression was upregulated in hypoxic HCMs. Hereafter, we confirmed that SOX2-OT could negatively regulate miR-27a-3p levels by directly binding with miR-27a-3p, and miR-27a-3p also could negatively regulate SOX2-OT levels. Furthermore, knockdown of SOX2-OT promoted cell proliferation, migration, and invasion, but limited cell apoptosis. However, these effects were reversed by anti-miR-27a-5p. Besides, we verified that miR-27a-3p binding with the 3′UTR of TGFBR1 and SOX2-OT regulated TGFβR1 level by collaborating with miR-27a-3p in HCMs. Eventually, rescue assays validated that the influence of SOX2-OT silence or miR-27a-3p overexpression on cellular processes in cardiomyocytes injury was counteracted by TGFBR1 overexpression. Conclusions. Long noncoding RNA SOX2-OT exacerbated hypoxia-induced cardiomyocytes injury by regulating miR-27a-3p/TGFβR1 axis, which may provide a novel insight for heart failure treatment.

2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Liyuan Zou ◽  
Xiaokun Ma ◽  
Shuo Lin ◽  
Bingyuan Wu ◽  
Yang Chen ◽  
...  

Abstract Long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) plays an important role in protection of ischemia–reperfusion (I/R) injury in brain and liver. However, role of MEG3 in myocardial I/R injury remains unclear. Here, the role of MEG3 in protection of myocardial I/R injury and its association with microRNA-7-5p (miR-7-5p) was investigated using rat cardiac I/R model and myocardial I/R cell model. Our results showed that MEG3 was significantly up-regulated and miR-7-5p was significantly down-regulated after I/R. Following I/R, the levels of intact PARP and intact caspase-3 were reduced, while the cleaved fragments of PARP and caspase-3 were increased. TUNEL assay showed an increase in cardiomyocyte apoptosis after I/R. The levels of I/R-induced creatine kinase (CK) and lactate dehydrogenase (LDH) were inhibited by knockdown of MEG3 (siMEG3). SiMEG3 increased cell proliferation and inhibited cell apoptosis after I/R. In contrast, overexpression of MEG3 increased the I/R-induced CK and LDH activities and cell apoptosis and decreased cell proliferation. The dual-luciferase reporter system showed a direct binding of MEG3 to miR-7-5p. The level of miR-7-5p was negatively associated with the change in levels of MEG3 in H9c2 cells. The levels of intact RARP1 and caspase-3 were significantly increased by knockdown of MEG3. Co-transfection of miR-7-5p inhibitor with siMEG3 activates CK and LDH, significantly decreased cell proliferation, increased cell apoptosis, and decreased intact poly(ADP-ribose) polymerase 1 (PARP1) and caspase-3. In summary, down-regulation of MEG3 protects myocardial cells against I/R-induced apoptosis through miR-7-5p/PARP1 pathway, which might provide a new therapeutic target for treatment of myocardial I/R injury.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yuhua He ◽  
Shuifang Xu ◽  
Yi Qi ◽  
Jinfang Tian ◽  
Fengying Xu

Abstract Background Small nucleolar RNA host gene 25 (SNHG25), a long noncoding RNA, has been well-studied in epithelial ovarian cancer. However, the specific functions of SNHG25 in endometrial cancer (EC) have not been studied yet. In this study, we aimed to elucidate the clinical significance of SNHG25 in EC and determine the regulatory activity of SNHG25 on the tumor-associated EC phenotype. We also thoroughly explored the molecular mechanisms underlying SNHG25 function in EC. Methods Gene expression was measured using quantitative real-time polymerase chain reaction. The detailed functions of SNHG25 in EC were examined by performing loss-of-function experiments. Moreover, the regulatory mechanisms involving SNHG25, microRNA-497-5p, and fatty acid synthase (FASN) were unveiled using the luciferase reporter assay and RNA immunoprecipitation. Results We observed a high level of SNHG25 in EC using the TCGA dataset and our study cohort. Patients with a high SNHG25 level had shorter overall survival than those with a low SNHG25 level. SNHG25 deficiency resulted in tumor-repressing activities in EC cells by decreasing cell proliferation, migration, and invasion and promoting cell apoptosis. Furthermore, the function of SNHG25 depletion in impairing tumor growth in vivo was confirmed. SNHG25 sequestered miR-497-5p as a competing endogenous RNA in EC and consequently positively regulated FASN expression. Thus, the decrease in miR-497-5p or increase in FASN could neutralize the modulatory actions of SNHG25 knockdown in EC cells. Conclusions The depletion of SNHG25 impedes the oncogenicity of EC by targeting the miR-497-5p/FASN axis. The newly elucidated SNHG25/miR-497-5p/FASN pathway may be a promising target for the molecular-targeted management of EC.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Guangbing Li ◽  
Haohai Zhang ◽  
Xueshuai Wan ◽  
Xiaobo Yang ◽  
Chengpei Zhu ◽  
...  

Long noncoding RNAs (lncRNAs) have been attracting immense research interests. However, only a handful of lncRNAs had been thoroughly characterized. They were involved in fundamental cellular processes including regulation of gene expression at epigenetics as well as tumorogenesis. In this paper, we give a systematic and comprehensive review of existing literature about lncRNA involvement in hepatocellular carcinoma. This review exhibited that lncRNAs played important roles in tumorigenesis and subsequent prognosis and metastasis of hepatocellular carcinoma and elucidated the role of some specific lncRNAs such as MALAT1 and HOTAIR in the pathophysiology of hepatocellular carcinoma and their potential of being therapeutic targets.


Author(s):  
Shujun Liu ◽  
Guigang Yan ◽  
Junfu Zhang ◽  
Lianzhi Yu

Evidence suggests that the long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is upregulated in cancer tissues, and its elevated expression is associated with hyperproliferation. However, the underlying mechanisms regarding the role of MALAT1 in retinoblastoma (RB) remain unclear. This study aimed to explore the functional role of MALAT1 in RB by targeting miR-124. The results showed that the expression of MALAT1 was significantly higher in the Y79 cell line than in the ARPE-19 cell line (p < 0.01). Moreover, MALAT1 silence inhibited cell viability, migration, and invasion and promoted apoptosis in Y79 cells (p < 0.05, p < 0.01, or p < 0.001). miR-124 was upregulated by MALAT1 silence and hence was identified as a target of MALAT1 (p < 0.05 or p < 0.001). In addition, miR-124 suppression inhibited cell apoptosis and remarkably abolished the inhibitory effects of MALAT1 silence on cell viability, migration, and invasion (p < 0.05, p < 0.01, or p < 0.001). In addition, Slug was a target of miR-124 and regulated cell viability, migration, invasion, and apoptosis in Y79 cells (p < 0.05, p < 0.01, or p < 0.001). Further, Slug silence abolished miR-124 suppression-induced inactivation of the ERK/MAPK and Wnt/β-catenin pathways. Taken together, our data highlight the pivotal role of MALAT1 in RB. Moreover, the present study elucidated the MALAT1‐miR-124‐ERK/MAPK and Wnt/β-catenin signaling pathways in RB, which might provide a new approach for the treatment of RB.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jian Tang ◽  
Chengxiao Fu ◽  
Yanwen Li ◽  
Shuangqin Chen ◽  
Xiaoxin Jiang ◽  
...  

Nasopharyngeal carcinoma (NPC) is a kind of malignancy generated from the nasopharyngeal epithelium. Recently, long noncoding RNA (lncRNA) has been shown to be involved in the regulation of many signaling pathways and is closely associated with carcinogenesis and tumor progression. However, the precise role of lncRNA Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in NPC is not well understood. Here, we find that OIP5-AS1 is overexpressed in NPC patient specimens and NPC cell lines. Further investigations reveal that knockdown of OIP5-AS1 significantly inhibits the proliferation, migration, and invasion and accelerates the apoptosis of NPC cells in vitro. Consistent with these findings, NPC progression is significantly slowed in mice when OIP5-AS1 is knocked down. Interestingly, there is a functional link between OIP5-AS1 and microRNA-203 (miR-203), a tumor suppressor, in NPC cells. In conclusion, our data demonstrate that OIP5-AS1 plays an important role in the development and progression of NPC by targeting miR-203 and therefore provide a promising target for the treatment of NPC.


Author(s):  
Xiaoqin Lu ◽  
Fuying Wang ◽  
Meizhou Fu ◽  
Yuankun Li ◽  
Lijun Wang

Long noncoding RNA KCNQ1OT1 (KCNQ1OT1) has been identified to be deregulated in several kinds of cancers. However, its expression pattern and functions in ovarian cancer remain unknown. Bioinformatics analysis showed that miR-212-3p, an identified suppressor in ovarian cancer, was a direct target of KCNQ1OT1, suggesting that KCNQ1OT1 may play a role in ovarian cancer progression via targeting miR-212-3p. Here we aimed to explore the effect of KCNQ1OT1 on the carcinogenesis of ovarian cancer, as well as to investigate miR-212-3p roles in this process. The expression of KCNQ1OT1 and miR-212-3p in ovarian cancer tissues and cells was detected by qPCR. MTT, flow cytometry, wound healing, Transwell chambers, and in vivo tumor formation assays were carried out to assess cell proliferation, apoptosis, migration, invasion, and tumorigenesis, respectively. RNA pulldown and luciferase gene reporter assays were used to evaluate the RNA‐RNA interaction. The results showed that KCNQ1OT1 was overexpressed in ovarian cancer tissues and cells, which closely associated with the advanced clinic process and poor prognosis in ovarian cancer patients. Upregulation of KCNQ1OT1 significantly enhanced cell growth, migration, and invasion and inhibited cell apoptosis via miR-212-3p. In addition, we identified that lipocalin2 (LCN2) was a direct target of miR-212-3p and functioned as an oncogene to promote cell growth and to inhibit cell apoptosis. Furthermore, we observed that KCNQ1OT1 overexpression significantly enhanced the tumorigenesis of SKOV3 cells, whereas this effect was significantly impaired when LCN2 expression was downregulated. Overall, the present study reveals that KCNQ1OT1 functions as an oncogene in ovarian cancer via targeting miR-212-3p/LCN2 axis, which might provide new markers and targets for ovarian cancer diagnosis and treatment.


2018 ◽  
Vol 50 (3) ◽  
pp. 1029-1040 ◽  
Author(s):  
Ning Zhang ◽  
Xin Meng ◽  
Lijun Mei ◽  
Jian Hu ◽  
Chedong Zhao ◽  
...  

Background/Aims: Long non-coding RNAs (lncRNAs) are theorized to play key roles in the development of heart diseases. However, the role of lncRNAs in cardiomyocyte apoptosis is largely unknown. The present study examined the role of lncRNA SNHG1 in the human cardiomyocytes (HCMs) apoptosis and explored the underlying molecular mechanisms. Methods: SNHG1, miR-195 and mRNA expression was detected by qRT-PCR; protein level was determined by western blot; cell viability was detected by MTT assay; cell apoptosis was evaluated by flow cytometry and caspase-3 activity assay; the interaction between SNHG1 and miR195 was examined by using luciferase reporter assay. Results: Hydrogen peroxide (H2O2) treatment significantly suppressed cell viability and increased cell apoptotic rate and caspase-3 activity in HCMs. Overexpression of SNHG1 attenuated the effects of H2O2 on HCMs viability and apoptosis; while SNHG1 exerted the opposite effects. SNHG1 was found to sponge miR-195 and suppress the expression of miR-195 in HCMs. Overexpression of miR-195 suppressed cell viability and induced apoptosis in HCMs, and miR-195 was found to negatively regulate the expression of BCL-2 like protein 2 (BCL2L2) via targeting its 3’ untranslated region. Overexpression of BCL2L2 partially reversed the effects of miR-195 overexpression on cell viability and cell apoptosis of HCMs. MiR-195 overexpression or BCL2L2 knockdown attenuated the effects of SNHG1 overexpression on cell viability, cell apoptosis and protein levels of cleaved caspase-3, cleaved caspase-9 and Bax in H2O2-treated HCMs. Conclusion: Our results suggest a novel SNHG1/miR-195/BCL2L2 axis in the regulation of cardiomyocyte apoptosis. Modulation of SNHG1 may represent a novel strategy to treat cardiomyocyte apoptosis-related heart diseases.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
LiPan Peng ◽  
ZeZhong Chen ◽  
GuangChuan Wang ◽  
ShuBo Tian ◽  
Shuai Kong ◽  
...  

Abstract Background Long noncoding RNAs (LncRNAs) have been reported to critically regulate gastric cancer (GC). Recently, it was reported that LBX2 antisense RNA 1 (LBX2-AS1) is abnormally expressed in GC. However, the role of LBX2-AS1 in the malignancy of GC is worth further discussion. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the LBX2-AS1, miR-4766-5p and C-X-C motif chemokine (CXCL5) expression in GC tissues and cells. Dual-luciferase reporter assay was applied to examine the target relationship between LBX2-AS1 and miR-4766-5p or miR-4766-5p and CXCL5. Cell counting kit-8 (CCK-8) and Transwell assays were used to detect cell proliferation, migration and invasion rates. The protein expression of CXCL5 was confirmed using western blot. The RNA pull down experiment was used to verify the specificity of LBX2-AS1 and miR-4766-5p on BGC-823 and SGC-7901 cells. Results LBX2-AS1 was up-regulated in GC tissues and cells, and its knockdown suppressed proliferation, migration and invasion of GC cells. While, overexpression of LBX2-AS1 increased proliferation and increased CXCL5 mRNA level. CXCL5 improved cell proliferation, migration and invasion of GC cells. LBX2-AS1 could bind to miR-4766-5p to regulate CXCL5 expression. Overexpression of CXCL5 overturned those effects of miR-4766-5p in GC cells. RNA Pull down shown that BGC-823 and SGC-7901 cells, miR-4766-5p specifically binds to LBX2-AS1. Conclusions In short, this study demonstrated that LBX2-AS1 promoted proliferation, migration and invasion through up-regulation CXCL5 mediated by miR-4766-5p in GC. The LBX2-AS1/miR-4766-5p/CXCL5 regulatory axis provides a theoretical basis for the research on lncRNA-directed therapeutics in GC.


2021 ◽  
Vol 11 (8) ◽  
pp. 1459-1465
Author(s):  
Jinjin Zhu ◽  
Pan Xu

Long noncoding RNA small nucleolar RNA host gene 6 (SNHG6) has been reported to be a tumor promoter in various human cancers. Nevertheless, the detailed functions and clinical value of SNHG6 in melanoma remain elusive. The study aimed to investigate the role and potential mechanism of SNHG6 in melanoma metastasis. Quantitative real-time PCR (qRT-PCR) was used to detect the expressions of SNHG6 and miR-944 in melanoma cells. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) assay, and cell migration and invasion were measured by wound healing assay and cell invasion assay, respectively. In addition, dual luciferase reporter assay was performed to verify the interaction between SNHG6 and miR-944. The protein expressions of PI3K/Akt pathway were evaluated by western blot assay. The results revealed that SNHG6 expression was significantly increased in melanoma cells. Knockdown of SNHG6 suppressed cell proliferation, migration and invasion in A375 cells. Moreover, miR-944 was identified as a direct target of SNHG6 in melanoma. miR-944 was downregulated in melanoma cells, while SNHG6 silencing improved miR-944 level in A375 cells. Rescue experiments demonstrated that miR-944 overexpression reversed the effects of SNHG6 on A375 cell proliferation, migration and invasion. Altogether, SNHG6 exerted oncogenic effects in melanoma cells, providing a novel promising target for the treatment of melanoma.


2019 ◽  
Vol 317 (4) ◽  
pp. H830-H839 ◽  
Author(s):  
Zhen Liu ◽  
Zhenming Kang ◽  
Yujian Dai ◽  
Huiming Zheng ◽  
Yingjun Wang

Infantile hemangiomas (IH) are a type of benign vascular neoplasm that may cause permanent scarring. Hemangioma-derived endothelial cells (HemECs) are commonly used as an in vitro model to study IH. Long noncoding RNA is a type of RNA transcript longer than 200 nucleotides that does not encode any protein. LINC00342 was discovered to regulate proliferation and apoptosis in nonsmall cell lung cancer. However, the role of LINC00342 in IH has never been reported before. Expressions of LINC00342 and miR-3619-5p were detected in proliferating versus normal skin tissues. Colony formation and Cell-Couting Kit 8 assays were carried out to study the effects on cell proliferation after knockdown and overexpression of LINC00342, respectively. Meanwhile caspase-3 activity and nucleosomal fragmentation assay were applied to detect cell apoptosis. Micro-RNA binding sites on LINC00342 and hepatoma-derived growth factor (HDGF) were predicted and confirmed via dual-luciferase reporter assay. Biotin RNA pulldown assay was used to verify the direct binding between RNA molecules. LINC00342 enhanced proliferation and inhibited apoptosis in HemECs. MiR-3619-5p targeted both LINC00342 and HDGF, where LINC00342 sponged miR-3619-5p and positively regulated HDGF. HDGF knockdown rescued the effects of LINC00342 on HemECs. The LINC00342-miR-3619-5p-HDGF signaling pathway could regulate cell proliferation and apoptosis in HemECs. NEW & NOTEWORTHY The role of LINC00342 in infantile hemangiomas has not yet been elucidated. This paper highlights the regulatory role of LINC00342 in cell proliferation and apoptosis in hemangioma-derived endothelial cells and the underlying molecular mechanisms. The findings would provide potential target for treatment of infantile hemangiomas.


Sign in / Sign up

Export Citation Format

Share Document