scholarly journals Quantitative Investigation on the Contributing Factors to the Contact Angle of the CO2/H2O/Muscovite Systems Using the Frumkin-Derjaguin Equation

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Masashige Shiga ◽  
Masaatsu Aichi ◽  
Masao Sorai

It is significant to understand the values and trends of the contact angle of CO2/brine/mineral systems to evaluate and model the sealing performance of CO2 Geo-Sequestration (CGS). It has been reported that the contact angles of the CO2/brine/muscovite systems increase as pressure increases from ambient conditions to reservoir conditions. This trend suggests a decrease in seal integrity. In this paper, we studied its mechanisms and the contributing factors by calculating the Frumkin-Derjaguin equation, which is based on the thermodynamics of the interfacial system. Results show that a decrease of pH is a critical factor for the wettability alteration at a lower pressure range (0.1 MPa to 3.0 MPa). In contrast, the increase of CO2 density and the decrease in the interfacial tension of CO2/brine are significant for the wettability change at a higher pressure range (3.0 MPa to 10.0 MPa). Also, sensitivity analysis shows that the contact angle is sensitive to the interfacial tension of CO2/brine and the coefficients of hydration forces.

1973 ◽  
Vol 13 (04) ◽  
pp. 221-232 ◽  
Author(s):  
N.R. Morrow ◽  
P.J. Cram ◽  
F.G. McCaffery

Abstract Various nitrogen-, oxygen- and sulfur-containing compounds native to crude oils were screened for their effect on wettability as measured by contact angle. Solid substrates of quartz, calcite, and dolomite crystals were used to represent reservoir rock surfaces. With water and decane as liquids, contact angles were measured after a given polar compound was added to the oil phase. Contact angles measured at the two types of carbonate surfaces were generally similar. None of the nitrogen or sulfur compounds studied gave contact angles greater than 66 degrees on either quartz or carbonates. Of the oxygen-containing compounds, octanoic acid gave the widest range of contact angle - 0 degrees to 145 degrees on dolomite - over a molar concentration range up to 0.1. Capillary - pressure and relative-permeability curves were obtained for water and solutions of octanoic acid in oil, using packings of powdered dolomite as the porous medium. Because of a slow reaction between dolomite and octanoic acid, which was not revealed by standard contact angle studies, special precautions were needed to ensure satisfactory wettability control during displacement tests. Capillary-pressure drainage curves were measured at six contact angles, ranging from 0 degrees to 140 degrees. Drainage-imbibition cycles for three packings of distinctly different particle size were measured at contact angles of 0 degrees and 49 degrees. The effect of contact angle on imbibition capillary pressures was close to that found previously for porous polytetra-fluoroethylene, whereas there was comparatively polytetra-fluoroethylene, whereas there was comparatively less effect on drainage behavior-steady-state relative permeability curves exhibited distinct differences for contact angles of 15 degrees, 100 degrees and 155 degrees. Introduction Waterflooding is the most successful and widely applied improved recovery technique. Its application in Alberta has, on the average, more than doubled the recovery obtained by primary depletion. However, even after waterflooding, it is estimated that two-thirds of the discovered oil remains unrecovered. Interfacial forces acting during waterflooding lead to the entrapment of large quantities of residual oil in the swept zones. Considerable attention has been paid to recovering this oil through new recovery methods in which the interface is eliminated as in miscible processes, or the interfacial tension is drastically lowered, as in surfactant floods. Such processes involve a high initial cost for an injected solvent or surfactant bank. Recently released information on a variety of such improved recovery techniques has not been altogether encouraging with regard to developing economical processes. A distinct alternative to eliminating the interface is to understand it and learn how it can be manipulated to give increased waterflood recoveries. A prospect for improved recovery at interfacial tensions of the order normally encountered in reservoirs lies in a favorable adjustment of wettability by incorporating small amounts of low-cost additives in the floodwater. A first step in developing the technology of improved recovery by wettability alteration is to determine the effect of wettability alteration on displacement in systems of uniform wettability. It has been shown that, even in the "near miscible" surfactant processes, wettability can still have a significant influence on the extent to which interfacial tension must be lowered in order to mobilize residual oil. At the time when waterflooding first found widespread use, wettability was recognized as a variable that might well have a significant influence on recovery performance. Reservoir wettability and the role of wettability in displacement has been the subject of some 50 or so publications. Even so, many aspects of wettability are not well understood and there is no general agreement on a satisfactory method of characterizing it. Opinions as to the optimum wettability condition for recovery cover the spectrum from strongly water-wet through weakly water-wet or intermediately wet to strongly oil-wet. It has recently been suggested that a mixed wettability condition can give high ultimate recoveries. SPEJ P. 221


2021 ◽  
Author(s):  
Rafael E. Hincapie ◽  
Ante Borovina ◽  
Elisabeth Neubauer ◽  
Samhar Saleh ◽  
Vladislav Arekhov ◽  
...  

Abstract Even though the influence of wettability alteration on imbibition is well-documented, its synergy with Interfacial-Tension (IFT) for Alkali/Nanoparticles/Polymer flooding requires additional investigation. Particularly, when the oil Total Acid Number (TAN) may determine the wetting-state of the reservoir and influences IFT. Therefore, a laboratory evaluation workflow is presented that combines complementary assessments such as spontaneous imbibition tests, IFT and contact angles measurements. This workflow aims at evaluating wettability alteration and IFT changes when injecting Alkali, Nanoparticles and Polymers or a combination of them. Dynamics and mechanism of imbibition was tracked by analyzing the recovery change with the inverse Bond number. Three sandstone types (outcrops) were used that mainly differ in clay content and permeability. Oils with low and high-TAN were used, the latter from the potential field pilot 16TH reservoir in the Matzen field (Austria). We have identified the conditions leading to an increase of recovery rates as well as ultimate recovery by imbibition of Alkali/Nanoparticles/Polymer aqueous phases. Data obtained demonstrate how oil TAN number (low and high), chemical agent and reservoir mineralogy influence fluid-fluid and rock-fluid interactions. Application of alkali with high-TAN oil resulted in a low-equilibrium IFT. Alkali-alone fall short to mobilize trapped low-TAN oil. Alkali-polymer is efficient in wettability alteration of oil-wet core plugs towards water-wet state for high-TAN oil. The investigated nanofluids manage to restore a water-wet state in cores with high clay content along with improving gravity driven flow. IFT reduction between oil and surface-modified nanoparticles is unaffected by the acidity of the oil. Furthermore, contact angle in high-TAN oil remained similar even after 1000 min of observation for 2.5% clay cores in synthetic brine, but increases significantly when in contact with alkali/polymer. Comparing porosity and permeability before and after imbibition, a slight reduction was observed after imbibition with brine and nanofluids. We preliminary conclude that permeability reduction is not associated to the tested nanoparticles present in solution. We observed evidence of change in the imbibition mechanism from counter-current (capillary driven/high inverse Bond number) to co-current (gravity driven/low inverse Bond number) for nanoparticles/alkali. The calculated inverse Bond number correlates with the ultimate recovery, larger inverse Bond number leading to lower ultimate recovery. This work presents novel data on the synergy of IFT, contact angles and Amott imbibition for the chemical processes studied. We leverage from complementary laboratory techniques to define a comprehensive workflow that allows understanding wettability-alteration when injecting Alkali, Nanoparticles and Polymers or a combination of them. Obtained results show that the workflow can be used as an efficient screening tool to determine the effectiveness of various substances to increase oil recovery rate and ultimate recovery.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1092-1107 ◽  
Author(s):  
M.. Tagavifar ◽  
M.. Balhoff ◽  
K.. Mohanty ◽  
G. A. Pope

Summary Surfactants induce spontaneous imbibition of water into oil-wet porous media by wettability alteration and interfacial-tension (IFT) reduction. Although the dependence of imbibition on wettability alteration is well-understood, the role of IFT is not as clear. This is partly because, at low IFT values, most water/oil/amphiphile(s) mixtures form emulsions and/or microemulsions, suggesting that the imbibition is accompanied by a phase change, which has been neglected or incorrectly accounted for in previous studies. In this paper, spontaneous displacement of oil from oil-wet porous media by microemulsion-forming surfactants is investigated through simulations and the results are compared with existing experimental data for low-permeability cores with different aspect ratios and permeabilities. Microemulsion viscosity and oil contact angles, with and without surfactant, were measured to better initialize and constrain the simulation model. Results show that with such processes, the imbibition rate and the oil recovery scale differently with core dimensions. Specifically, the rate of imbibition is faster in cores with larger diameter and height, but the recovery factor is smaller when the core aspect ratio deviates considerably from unity. With regard to the mechanism of water uptake, our results suggest, for the first time, that (i) microemulsion formation (i.e., fluid/fluid interface phenomenon) is fast and favored over the wettability alteration (i.e., rock-surface phenomenon) in short times; (ii) a complete wettability transition from an oil-wet to a mixed microemulsion-wet and surfactant-wet state always occurs at ultralow IFT; (iii) wettability alteration causes a more uniform imbibition profile along the core but creates a more diffused imbibition front; and (iv) total emulsification is a strong assumption and fails to describe the dynamics and the scaling of imbibition. Wettability alteration affects the imbibition dynamics locally by changing the composition path, and at a distance by changing the flow behavior. Simulations predict that even though water is not initially present, it forms inside the core. The implications of these results for optimizing the design of low-IFT imbibition are discussed.


2018 ◽  
Author(s):  
M. Elsharafi ◽  
K. Vidal ◽  
R. Thomas

Contact angle measurements are important to determine surface and interfacial tension between solids and fluids. A ‘water-wet’ condition on the rock face is necessary in order to extract oil. In this research, the objectives are to determine the wettability (water-wet or oil-wet), analyze how different brine concentrations will affect the wettability, and study the effect of the temperature on the dynamic contact angle measurements. This will be carried out by using the Cahn Dynamic Contact Angle. Analyzer DCA 315 to measure the contact angle between different fluids such as surfactant, alkaline, and mineral oil. This instrument is also used to measure the surface properties such as surface tension, contact angle, and interfacial tension of solid and liquid samples by using the Wilhelmy technique. The work used different surfactant and oil mixed with different alkaline concentrations. Varying alkaline concentrations from 20ml to 1ml were used, whilst keeping the surfactant concentration constant at 50ml.. It was observed that contact angle measurements and surface tension increase with increased alkaline concentrations. Therefore, we can deduce that they are directly proportional. We noticed that changing certain values on the software affected our results. It was found that after calculating the density and inputting it into the CAHN software, more accurate readings for the surface tension were obtained. We anticipate that the surfactant and alkaline can change the surface tension of the solid surface. In our research, surfactant is desirable as it maintains a high surface tension even when alkaline percentage is increased.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Limin Zhang ◽  
Ning Li ◽  
Hui Xing ◽  
Rong Zhang ◽  
Kaikai Song

The effect of direct current (DC) on the wetting behavior of Cu substrate by liquid Ga–25In–13Sn alloy at room temperature is investigated using a sessile drop method. It is found that there is a critical value for current intensity, below which the decrease of contact angle with increasing current intensity is approximately linear and above which contact angle tends to a stable value from drop shape. Current polarity is a negligible factor in the observed trend. Additionally, the observed change in contact angles is translated into the corresponding change in solid-liquid interfacial tension using the equation of state for liquid interfacial tensions. The solid-liquid interfacial tension decreases under DC. DC-induced promotion of solute diffusion coefficient is likely to play an important role in determining the wettability and solid-liquid interfacial tension under DC.


SPE Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
Timothy S. Duffy ◽  
Isaac K. Gamwo ◽  
Russell T. Johns ◽  
Serguei N. Lvov

Summary Innovative approaches are needed to improve the efficiency of oil recovery technologies to meet the growing demands of fossil-fuel based energy consumption. Enhanced oil recovery (EOR) methods such as low-salinity waterflooding and chemically tuned waterflooding aim to optimize the reservoir’s wetting properties, detaching oil globules from rock surfaces and allowing easier oil flow through pore throats. This wetting behavior is commonly quantified by contact angle measurements of the rock-oil-brine interface, which have been thoroughly investigated and theorized for many systems at ambient temperatures and pressures. However, few studies exist for extending contact angle theories away from ambient conditions. In this paper, we model the contact angles of a quartz-water-decane system at elevated temperatures using the surface tension component (STC) approach. Temperature-dependent van der Waals [Lifshitz-van der Waals (LW)] interactions and hydrogen-bonding (acid-base) interactions were calculated and are incorporated into the model for the quartz-water-decane interface. The Hough and White procedure was used to create temperature-dependent dielectric functions of quartz, water, and normal decane for calculations of Hamaker coefficients. Hamaker coefficients calculated this way are highly linear with temperature and agree well with Israelachvili’s approximation. The acid-base interactions likely contribute the most to system wettability changes. Resulting contact angles of the quartz-water-decane system shift from water-wet (16°) to slightly water-wet (57.4°) as temperature increases. The model was also successfully verified for the quartz-air-water system. Our results can be used in future studies to determine optimal injected water compositions for specific rock-oil-brine and other systems with consideration of reservoir temperature.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Jongwon Jung ◽  
Jong Wan Hu

Capillary pressure-water saturation relations are required to explore the CO2/brine flows in deep saline aquifers including storage capacity, relative permeability of CO2/brine, and change to stiffness and volume. The study on capillary pressure-water saturation curves has been conducted through experimentation and theoretical models. The results show that as the pressure increases up to 12 MPa, (1) capillary pressure-water saturation curves shift to lower values at given water saturation, (2) after the drainage process, residual water saturation decreases, and (3) after the imbibition process, capillary CO2trapping increases. Capillary pressure-water saturation curves above 12 MPa appear to be similar because of relatively constant contact angle and interfacial tension. Also, as brine salinity increases from 1 M to 3 M NaCl, (1) capillary pressure-water saturation curves shift to lower capillary pressure, (2) residual water saturation decreases, and (3) capillary CO2trapping increases. The results show that pressure and brine salinity have an influence on the capillary pressure-water saturation curves. Also, the scaled capillary CO2entry pressure considering contact angle and interfacial tension is inconsistent with atmospheric conditions due to the lack of wettability information. Better exploration of wettability alteration is required to predict capillary pressure-water saturation curves at various conditions that are relevant to geological CO2sequestration.


2019 ◽  
Vol 10 (4) ◽  
pp. 1551-1563 ◽  
Author(s):  
Siamak Najimi ◽  
Iman Nowrouzi ◽  
Abbas Khaksar Manshad ◽  
Amir H. Mohammadi

Abstract Surfactants are used in the process of chemical water injection to reduce interfacial tension of water and oil and consequently decrease the capillary pressure in the reservoir. However, other mechanisms such as altering the wettability of the reservoir rock, creating foam and forming a stable emulsion are also other mechanisms of the surfactants flooding. In this study, the effects of three commercially available surfactants, namely AN-120, NX-1510 and TR-880, in different concentrations on interfacial tension of water and oil, the wettability of the reservoir rock and, ultimately, the increase in oil recovery based on pendant drop experiments, contact angle and carbonate core flooding have been investigated. The effects of concentration, temperature, pressure and salinity on the performances of these surfactants have also been shown. The results, in addition to confirming the capability of the surfactants to reduce interfacial tension and altering the wettability to hydrophilicity, show that the TR-880 has the better ability to reduce interfacial tension than AN-120 and NX-1510, and in the alteration of wettability the smallest contact angle was obtained by dissolving 1000 ppm of surfactant NX-1510. Also, the results of interfacial tension tests confirm the better performances of these surfactants in formation salinity and high salinity. Additionally, a total of 72% recovery was achieved with a secondary saline water flooding and flooding with a 1000 ppm of TR-880 surfactant.


Sign in / Sign up

Export Citation Format

Share Document