scholarly journals MicroRNA-103 Protects Coronary Artery Endothelial Cells against H2O2-Induced Oxidative Stress via BNIP3-Mediated End-Stage Autophagy and Antipyroptosis Pathways

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yiran Wang ◽  
Xianjing Song ◽  
Zhibo Li ◽  
Ning Liu ◽  
Youyou Yan ◽  
...  

Endothelial cell damage caused by oxidative stress is widely considered to be a triggering event in atherosclerosis (AS). However, the specific effect elicited by autophagy in endothelial cells undergoing oxidative stress remains controversial, especially during end-stage autophagy. The inhibition of end-stage autophagy has been reported to increase cell pyroptosis and contribute to endothelial damage. Several studies have shown that microRNA-103 is involved in end-stage autophagy; however, its specific mechanism of action is not yet characterized. In this study, we addressed the regulatory role of miR-103 in autophagy during oxidative stress of endothelial cells. Hydrogen peroxide (H2O2) treatment was used as an in vitro model of oxidative stress. MTS and ROS levels were measured to evaluate cell activity. qRT-PCR was used to detect the expression of miR-103. Autophagy was examined using western blot, immunofluorescence staining, and electron microscopy, while western blot analysis detected pyroptosis-related proteins. Results show that miR-103 expression decreased under oxidative stress. Further, miR-103 repressed transcription of Bcl-2/adenovirus E1B 19 kDa interacting protein (BNIP3). The oxidative stress caused by H2O2 caused cell damage from 2 hours (P<0.05) and increased the level of intracellular reactive oxygen species (P<0.05); at the same time, the damage could be further aggravated by the stimulation of bafA1 (P<0.05). Under the stimulation of H2O2, the expression of miR-103 decreased (P<0.05). However, high expression of miR-103 could reduce the accumulation of LC3II and P62 (P<0.05) by inhibiting the downstream target gene Bcl-2/adenovirus E1B 19 kDa interacting protein (BNIP3), thus reducing the occurrence of cell pyroptosis (P<0.05). This process could be blocked by end-stage autophagy inhibitor bafA1 (P<0.05), which further indicated that miR-103 affected cell injury by autophagy. On the contrary, the low expression of miR-103 promoted the accumulation of autophagy protein and increased the occurrence of pyroptosis (P<0.05). In conclusion, inhibition of miR-103 restrained end-stage of autophagy by regulating BNIP3, thus changing the occurrence of cell pyroptosis.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Mao-Chun Xu ◽  
Xiu-Fang Gao ◽  
Changwu Ruan ◽  
Zhi-Ru Ge ◽  
Ji-De Lu ◽  
...  

Oxidative stress plays a critical role in cardiovascular diseases. Salidroside, a glycoside fromRhodiola rosea, has been used as an antioxidative therapy for oxidative injury in cardiac diseases. However, the mechanism underlying its antioxidant effect needs to be elucidated. Treatment of HUVECs with H2O2significantly decreased the expression of miR-103 in a dose- and time-dependent manner, whereas pretreatment with salidroside significantly inhibited this decrease. Subsequent analysis showed that overexpression of miR-103 abrogated cell activity and ROS production induced by H2O2. Bcl2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3) was determined to be a novel miR-103 target in HUVECs. Interestingly, H2O2treatment upregulated BNIP3 expression; in turn, this effect was inhibited by pretreatment with salidroside. Further studies confirmed that the knockdown of BNIP3 enhanced cell activity and suppressed the ROS production induced by H2O2. These results demonstrated for the first time that salidroside protects HUVECs in part by upregulating the expression of miR-103, which mediates BNIP3 downregulation and plays an important role in the cytoprotective actions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaobo Zhou ◽  
Xue Zhao ◽  
Wei Zhou ◽  
Hongbo Qi ◽  
Hua Zhang ◽  
...  

AbstractPreeclampsia (PE) is a severe multisystem pregnancy complication characterized by gestational hypertension and proteinuria. Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNIP3) is a mediator of mitophagy and has been proven to be associated with PE, but the mechanism is not well understood. This study aimed to investigate the role of BNIP3 in PE. Placentae from preeclamptic and normal pregnancies were analyzed by western-blot and transmission electron microscopy to quantify the level of BNIP3 expression and observe the organelle morphologies. Trophoblast cells with knockdown BNIP3 were analyzed by western-blot, immunofluorescence, flow cytometry, migration and invasion assays. BNIP3 expression was suppressed in PE patients. Impaired autophagy and increased mitochondrial damage were observed in PE placentae when compared with normal placentae. Suppression of BNIP3 inhibited Beclin-1 expression and reduced the transformation of LC3-I to LC3-II. In the knockdown BNIP3 group, p62 was overexpressed, ROS accumulated and the apoptotic process was elevated under oxidative stress condition. The knockdown of BNIP3 reduced the colocalization of GFP-LC3 and mitochondria. The findings of this study suggest that dysregulated BNIP3 is associated with impaired mitophagy, oxidative stress, and apoptosis in PE. The study provides new insights into the role of BNIP3 in the pathophysiology of PE.


2021 ◽  
Vol 6 (1) ◽  
pp. 179-181
Author(s):  
Rusdiana ◽  
Muhammad Syahputra ◽  
Sry Suryani

Preliminary : Endothelial cells are a single layer that lines the entire vascular system. Endothelial dysfunction can be triggered by several main things, namely physical stress, oxidative stress and irritant substances. Obesity triggers an inflammatory process and metabolic disorders that will lead to increased oxidative stress. Long-term oxidative stress will cause damage to cells and tissues and trigger degenerative diseases. Damage to endothelial cells is expected to be detected by examining Von Willenbrand levels so that it can prevent complications of vascular disorders early. Method: This research is descriptive with cross sectional design. Carried out from March to October 2018 on the USU Campus. The first examination was done to measure body weight and height to determine body mass index, then performed lipid profile and blood sugar levels (KGD) in the sample, then examined von Willenbrand factor levels carried out in the integrated laboratory of USU FK using the method ELISA in both the sample group and the control group. The research subjects were adolescents aged 17-25 years with BMI> 25 kg / m2Data analysis was carried out using the T-Test statistical program, comparing two groups. Result: Of the 40 obese subjects found Von Wilenbrand level values ​​The lowest factor was 1.78 IU / ml and the highest was 35.60 IU / ml. Whereas in 40 non-obese subjects Von Wilenbrand grade values ​​were the lowest factor of 2.01 IU / ml and the highest was 45.10 IU / ml. This difference was not statistically significant (p = 0.661).Conclusion: There was no significant difference between the levels of Von Wilenbrand Factors in obese subjects with non-obese subjectsKey Words: Obesity, endothelial cells, Von Wilenbrand Factors


2010 ◽  
Vol 30 (7) ◽  
pp. 579-590 ◽  
Author(s):  
Han Wei ◽  
Dan Wei ◽  
Shuo Yi ◽  
Fang Zhang ◽  
Wenjun Ding

It has been reported that vascular endothelia cell damage is an important precursor to the morbidity and mortality associated with cardiovascular disease exposed to airborne particulate matter (PM). The present study investigated the hypothesis that urban fine (PM2.5) particles could cause cytotoxicity via oxidative stress in human umbilical vein endothelial cells, EA.hy926. The concentrations of metal elements (Cr, Fe, Ni, Cu, Zn, Mo, Cd and Pb) in PM2.5 suspension, water-soluble and water-insoluble fractions of PM2.5 were determined by inductively coupled plasma - mass spectrometry (ICP-MS). Iron (Fe), Zn and Pb were highly enriched in all the samples. Exposure of the cultured EA.hy926 cells to PM2.5 suspension, water-soluble and water-insoluble fractions of PM2.5 led to cell death, reactive oxygen species (ROS) increase, mitochondrial transmembrane potential (ΔΨm) disruption and NF-κB activation, respectively. The ROS increase by exposure to PM 2.5 suspension, water-soluble and water-insoluble fractions of PM 2.5 triggered the activation of nuclear factor (NF)-κB, which means that PM2.5 particles exert cytotoxicity by an apopotic process. However, the induction of cytotoxicity by PM2.5 suspension, water-soluble and water-insoluble fractions of PM2.5 was reversed by pretreatment with superoxide dismutase (SOD). These results suggest that each fraction of PM2.5 has a potency to cause oxidative stress in endothelial cells. ROS was generated through PM2.5-mediated mitochondrial apoptotic pathway, which may induce direct interaction between metal elements and endothelia cells.


2011 ◽  
Vol 300 (4) ◽  
pp. C927-C936 ◽  
Author(s):  
Rosa Fernandes ◽  
Ken-ichi Hosoya ◽  
Paulo Pereira

Retinal endothelial cells are believed to play an important role in the pathogenesis of diabetic retinopathy. In previous studies, we and others demonstrated that glucose transporter 1 (GLUT1) is downregulated in response to hyperglycemia. Increased oxidative stress is likely to be the event whereby hyperglycemia is transduced into endothelial cell damage. However, the effects of sustained oxidative stress on GLUT1 regulation are not clearly established. The objective of this study is to evaluate the effect of increased oxidative stress on glucose transport and on GLUT1 subcellular distribution in a retinal endothelial cell line and to elucidate the signaling pathways associated with such regulation. Conditionally immortalized rat retinal endothelial cells (TR-iBRB) were incubated with glucose oxidase, which increases the intracellular hydrogen peroxide levels, and GLUT1 regulation was investigated. The data showed that oxidative stress did not alter the total levels of GLUT1 protein, although the levels of mRNA were decreased, and there was a subcellular redistribution of GLUT1, decreasing its content at the plasma membrane. Consistently, the half-life of the protein at the plasma membrane markedly decreased under oxidative stress. The proteasome appears to be involved in GLUT1 regulation in response to oxidative stress, as revealed by an increase in stabilization of the protein present at the plasma membrane and normalization of glucose transport following proteasome inhibition. Indeed, levels of ubiquitinated GLUT1 increase as revealed by immunoprecipitation assays. Furthermore, data indicate that protein kinase B activation is involved in the stabilization of GLUT1 at the plasma membrane. Thus subcellular redistribution of GLUT1 under conditions of oxidative stress is likely to contribute to the disruption of glucose homeostasis in diabetes.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 943 ◽  
Author(s):  
Yi-Jen Hsueh ◽  
Yaa-Jyuhn James Meir ◽  
Lung-Kun Yeh ◽  
Tze-Kai Wang ◽  
Chieh-Cheng Huang ◽  
...  

Compromised pumping function of the corneal endothelium, due to loss of endothelial cells, results in corneal edema and subsequent visual problems. Clinically and experimentally, oxidative stress may cause corneal endothelial decompensation after phacoemulsification. Additionally, in vitro and animal studies have demonstrated the protective effects of intraoperative infusion of ascorbic acid (AA). Here, we established a paraquat-induced cell damage model, in which paraquat induced reactive oxygen species (ROS) production and apoptosis in the B4G12 and ARPE-19 cell lines. We demonstrate that oxidative stress triggered autophagic flux blockage in corneal endothelial cells and that addition of AA ameliorated such oxidative damage. We also demonstrate the downregulation of Akt phosphorylation in response to oxidative stress. Pretreatment with ascorbic acid reduced the downregulation of Akt phosphorylation, while inhibition of the PI3K/Akt pathway attenuated the protective effects of AA. Further, we establish an in vivo rabbit model of corneal endothelial damage, in which an intracameral infusion of paraquat caused corneal opacity. Administration of AA via topical application increased its concentration in the corneal stroma and reduced oxidative stress in the corneal endothelium, thereby promoting corneal clarity. Our findings indicate a perioperative strategy of topical AA administration to prevent oxidative stress-induced damage, particularly for those with vulnerable corneal endothelia.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Ryousuke Satou ◽  
Andrea Zsombok ◽  
Andrei V Derbenev

Overactivity of the intrarenal renin-angiotensin system contributes to the development of hypertension and renal injury. In this process, regulation of angiotensinogen (AGT) in renal proximal tubular cells (RPTC) is a key factor. Oxidative stress stimulates AGT expression accompanied by activation of p38 MAPK in RPTC. Transient receptor potential A1 (TRPA1) is known to be a sensor activated by a variety of noxious stimuli including hydrogen peroxide. Activated TRPA1 induces calcium influx across the plasma membrane leading to activation of AGT-inducible signal transducers. However, the presence and function of TRPA1 in the kidney have not been delineated. Therefore, this study was performed to demonstrate expression of intrarenal TRPA1 and its role in AGT augmentation in RPTC. Expression of TRPA1 in mouse kidney and cultured mouse RPTC were determined by RT-PCR, in situ hybridization, western blot analysis and immunocytochemistry. The RPTC were treated with 100 μM H2O2 for 1 hr with or without 10μM HC030031, a TRPA1 specific antagonist. EGTA was used to the culture medium for depletion of extracellular calcium. Thereafter, AGT expression levels were evaluated by real-time RT-PCR, and TRPA1 expression levels and p38 MAPK activity were determined by western blot analyses. TRPA1 expression was observed in tubules of renal cortex, and the cultured PRTC expressed TRPA1 mRNA and protein. H2O2 increased AGT expression (1.54 ± 0.08, ratio to control) in RPTC. The AGT augmentation was suppressed by HC030031 (1.19 ± 0.05, ratio to control). Calcium depletion also resulted in attenuation of the AGT augmentation induced by H2O2. Although H2O2 induced phosphorylation of p38 MAPK, HC030031 did not inhibit the p38 MAPK activation. TRPA1 expression was increased by H2O2 under the experimental condition (1.90 ± 0.06, ratio to control). These results suggest that TRPA1 is expressed in RPTC, which contributes to H2O2-induced AGT augmentation via calcium-dependent but p38 MAPK-independent pathways. Furthermore, increase in TRPA1 expression by H2O2 likely facilitates the stimulation of AGT expression. Therefore, TRPA1 may play an important role in the progression of oxidative stress-associated renal injury and hypertension via the stimulation of AGT expression in RPTC.


2019 ◽  
Vol 51 (12) ◽  
pp. 1250-1257 ◽  
Author(s):  
Cuirong Chen ◽  
Jing Huang ◽  
Jian Shen ◽  
Qingke Bai

Abstract Studies have shown that endothelial insulin resistance induced by oxidative stress contributes to vascular dysfunction in metabolic disorders. Quercetin, a natural antioxidant, has been recently shown to exert protective effects on endothelial function. However, the effects of quercetin on endothelial insulin resistance and its underlying mechanism are unclear. Here, we found that chronic oral treatment of obese mice with quercetin increased vascular endothelial insulin sensitivity, accompanied by alleviated mitochondrial fragmentation as revealed by confocal imaging. In addition, western blot analysis showed that quercetin treatment suppressed the levels of dynamin-related protein 1 (Drp1) and phosphorylation at serine 616 in endothelial cells of obese mice. Mechanistically, quercetin specifically suppressed Drp1 phosphorylation at serine 616, whereas it showed little effects on the Drp1 level and its phosphorylation at serine 637 in cultured endothelial cells under oxidative stress. Furthermore, our results also showed that quercetin suppressed Drp1 phosphorylation at serine 616 by inhibiting PKCδ as revealed by western blot analysis. Knockdown of PKCδ with siRNA alleviated the protective effects of quercetin on endothelial-mitochondrial dynamics and insulin sensitivity. These results suggest that chronic oral treatment with quercetin exerts endothelial protective effects through inhibition of PKCδ and the resultant mitochondrial fragmentation.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 978
Author(s):  
Jeong Seop Park ◽  
Jiyuan Piao ◽  
Gabee Park ◽  
Hyun Sook Hong

Oxidative stress induces cellular damage, which accelerates aging and promotes the development of serious illnesses. Adipose-derived stem cells (ADSCs) are novel cellular therapeutic tools and have been applied for tissue regeneration. However, ADSCs from aged and diseased individuals may be affected in vivo by the accumulation of free radicals, which can impair their therapeutic efficacy. Substance-P (SP) is a neuropeptide that is known to rescue stem cells from senescence and inflammatory attack, and this study explored the restorative effect of SP on ADSCs under oxidative stress. ADSCs were transiently exposed to H2O2, and then treated with SP. H2O2 treatment decreased ADSC cell viability, proliferation, and cytokine production and this activity was not recovered even after the removal of H2O2. However, the addition of SP increased cell viability and restored paracrine potential, leading to the accelerated repopulation of ADSCs injured by H2O2. Furthermore, SP was capable of activating Akt/GSK-3β signaling, which was found to be downregulated following H2O2 treatment. This might contribute to the restorative effect of SP on injured ADSCs. Collectively, SP can protect ADSCs from oxidant-induced cell damage, possibly by activating Akt/GSK-3β signaling in ADSCs. This study supports the possibility that SP can recover cell activity from oxidative stress-induced dysfunction.


Sign in / Sign up

Export Citation Format

Share Document