scholarly journals LncRNA H19 Upregulation Participates in the Response of Glioma Cells to Radiation

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yanbei Kuang ◽  
Zhitong Bing ◽  
Xiaodong Jin ◽  
Qiang Li

Previous studies have indicated that radiation resistance of glioma is one of the leading causes of radiotherapy failure. Mounting evidence suggests that long non-coding RNA (lncRNA) plays an important role in regulating radiosensitivity of cancer cells via implicating in various cell processes. However, the underlying mechanisms remain unclear and need further study, especially at the molecular level. We found that the expression level of lncRNA H19 was elevated by radiation, and then, the modulation of H19 affected the resistant of glioma cells to X-rays. Dual-luciferase reporter analyses showed that H19 was transcriptionally activated by CREB1 in glioma cells after irradiation. In addition, both flow cytometry and 5-ethynyl-2 ′ -deoxyuridine (EdU) assay suggested that H19 was involved in the cell cycle arrest, apoptosis, and DNA synthesis to modulate the radiation response of glioma cells and influenced their radioresistance. Therefore, H19 might play a crucial role in enhancing the radioresistance of glioma.

Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 921-931
Author(s):  
Juan Zhao ◽  
Xue-Bin Zeng ◽  
Hong-Yan Zhang ◽  
Jie-Wei Xiang ◽  
Yu-Song Liu

AbstractLong non-coding RNA forkhead box D2 adjacent opposite strand RNA 1 (FOXD2-AS1) has emerged as a potential oncogene in several tumors. However, its biological function and potential regulatory mechanism in glioma have not been fully investigated to date. In the present study, RT-qPCR was conducted to detect the levels of FOXD2-AS1 and microRNA (miR)-506-5p, and western blot assays were performed to measure the expression of CDK2, cyclinE1, P21, matrix metalloproteinase (MMP)7, MMP9, N-cadherin, E-cadherin and vimentin in glioma cells. A luciferase reporter assay was performed to verify the direct targeting of miR-506-5p by FOXD2-AS1. Subsequently, cell viability was analyzed using the CCK-8 assay. Cell migration and invasion were analyzed using Transwell and wound healing assays, respectively. The results demonstrated that FOXD2-AS1 was significantly overexpressed in glioma cells, particularly in U251 cells. Knockdown of FOXD2-AS1 in glioma cells significantly inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) and regulated the expression of CDK2, cyclinE1, P21, MMP7 and MMP9. Next, a possible mechanism for these results was explored, and it was observed that FOXD2-AS1 binds to and negatively regulates miR-506-5p, which is known to be a tumor-suppressor gene in certain human cancer types. Furthermore, overexpression of miR-506-5p significantly inhibited cell proliferation, migration, invasion and EMT, and these effects could be reversed by transfecting FOXD2-AS1 into the cells. In conclusion, our data suggested that FOXD2-AS1 contributed to glioma proliferation, metastasis and EMT via competitively binding to miR-506-5p. FOXD2-AS1 may be a promising target for therapy in patients with glioma.


Author(s):  
Xubin Ren ◽  
Nie Xu ◽  
Yunting Zhang ◽  
Tao Wang

Increasing evidence demonstrates that long non-coding RNAs (lncRNAs) play important regulatory roles in mediating initiation and progression of lung adenocarcinoma (LA), which is one of the most lethal in humans. A previous study reported that lncRNAZXF1 was dysregulated in LA and enhanced expression of ZXF1 promoted the invasion and metastasis in LA. However, the effect of ZXF1 on LA progression and its underlying mechanisms were not thoroughly investigated. In our in vitro experiments, qRT-PCR revealed that the expression level of ZXF1 in LA tissues and tumor cells were significantly higher than that in adjacent normal tissues and normal cells. Furthermore, bioinformatics analysis, luciferase reporter assay, western blot and RNA immunoprecipitation (RIP) assay showed that ZXF1 could directly interact with miR-634, which targets GRB2. Therefore, we propose that ZXF1 could function as an oncogene partly by sponging miR-634 and therefore regulating GRB2 expression in LA. Overall, this study demonstrated, for the first time, that the lncRNA ZXF1/miR-634/GRB2 axis plays crucial roles in modulating LA progression. Moreover, lncRNA ZXF1 might potentially improve LA prognosis and serve as a therapeutic target for the treatment of LA.


2018 ◽  
Vol 38 (4) ◽  
Author(s):  
ZheXing Wang ◽  
LiMing Pan ◽  
HaiXiang Yu ◽  
Yue Wang

Gefitinib resistance is one of the major obstacles for the treatment of lung adenocarcinoma (LAD). The present study aimed to investigate the effects of the long non-coding RNA (lncRNA), small nucleolar RNA host gene 5SNHG5 on gefitinib resistance in LAD and explore the underlying mechanisms. The quantitative real-time PCR (qRT-PCR) results showed that SNHG5 expression was significantly down-regulated in LAD patients with acquired gefitinib resistance and gefitinib resistant LAD cell lines. SNHG5 overexpression sensitized gefitinib resistant LAD cells to gefitinib treatment, while knockdown of SNHG5 rendered gefitinib sensitive LAD cells to gefitinib treatment. Bioinformatics analysis showed that SNHG5 exerted its function through interaction with miR-377, which was further confirmed by luciferase reporter assay in 293T cells. Overexpression of SNHG5 suppressed the expression of miR-377, while the knockdown of SNHG5 increased the miR-377 expression. MiR-377 expression was significantly up-regulated in LAD specimens with acquired gefitinib resistance and was negatively correlated with SNHG5 expression. In addition, CASP1 was predicted as a downstream target of miR-377. Overexpression of miR-377 suppressed the expression of CASP1 in PC9 cells and knockdown of miR-377 increased the CASP1 expression in PC9GR cells. In vitro functional assay showed that knockdown of CASP1 in SNHG5-overexpressed PC9GR cells abolished their gefitinib resistance. Overall, the present study demonstrated, for the first time, that the SNHG5/miR-377/CASP1 axis functions as an important role in LAD cells gefitinib resistance and potentially contributes to the improvement of LAD diagnosis and therapy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wenjia Ma ◽  
Yu Zhou ◽  
Min Liu ◽  
Qilin Qin ◽  
Yan Cui

Abstract Background To explore the mechanism of LINC00470 in serum exosomes from glioma patients regulating the autophagy and proliferation of glioma cells. Methods Exosomes were extracted from glioma patients (GBM-exo). Expression of LINC00470 in exosomes was analyzed with the clinicopathological characteristics of glioma patients. Glioma mouse model was established. The effects of LINC00470, miR-580-3p and WEE1 on cell autophagy and proliferation, as well as the activation of PI3K/AKT/mTOR pathway were measured. Dual luciferase reporter assay and RNA immunoprecipitation (RIP) were conducted to validate the binding of LINC00470 and miR-580-3p and of miR-580-3p and WEE1. Results LINC00470 overexpressed in GBM-exo and associated with disease severity and postoperative survival time of glioma patients. GBM-exo deteriorated tumor progression in nude mice. Cells incubated with GBM-exo or transfected with pcDNA3.1-LINC00470/miR-580-3p inhibitor/pcDNA3.1-WEE1 had less autophagosome, downregulated LC3-II/LC3-I and Beclin1 expression levels and increased expression of p62 as well as strengthened proliferation ability. The PI3K/AKT/mTOR pathway was activated. LINC00470 competitively bound to miR-580-3p with WEE1. Conclusion LINC00470 in GBM-exo can bind to miR-580-3p in glioma cells to regulate WEE1 expression and activate the PI3K/AKT/mTOR pathway, thereby inhibiting autophagy and enhancing the proliferation of glioma cells.


Author(s):  
Xijuan Chen ◽  
Yingqiang Liu ◽  
Qinglan Zhang ◽  
Baoxing Liu ◽  
Yan Cheng ◽  
...  

It has been reported that long non-coding RNA HOXA distal transcript antisense RNA (lncRNA HOTTIP) functions as a tumor promoter in colorectal cancer (CRC). Hence, we paid attention to exploring whether exosomes could carry lncRNA HOTTIP to affect the mitomycin resistance in CRC and to identify the underlying mechanisms. High expression of HOTTIP was detected in mitomycin-resistant CRC cells. Inhibition of HOTTIP reduced the mitomycin resistance. In the co-culture system of mitomycin-resistant cells or their derived exosomes with CRC cells, the HOTTIP was found to be transferred into the parental cells via extracellular vesicles (EVs) secreted from mitomycin-resistant cells and to contribute to the mitomycin resistance. Based on the bioinformatics databases, possible interaction network of HOTTIP, microRNA-214 (miR-214) and Karyopherin subunit alpha 3 (KPNA3) in CRC was predicted, which was further analyzed by dual-luciferase reporter, RNA binding protein immunoprecipitation and RNA pull-down assays. As HOTTIP down-regulated miR-214 to elevate the KPNA3 expression, HOTTIP enhanced the mitomycin resistance through impairing miR-214-dependent inhibition of KPNA3. Finally, HOTTIP was suggested as an independent factor predicting mitomycin response in patients with CRC. Those data together confirmed the promotive effects of EV-carried HOTTIP on the mitomycin resistance, while targeting HOTTIP might be a promising strategy overcoming drug resistance in CRC.


2021 ◽  
Author(s):  
Xiao-Guang Chen ◽  
Bing-Hua Dou ◽  
Jin-Dou An ◽  
Song Feng ◽  
Na Liu ◽  
...  

Abstract Background: Long non-coding RNA MAGI2 antisense RNA 3 (MAGI2-AS3) has been identified as a tumor suppressor in various cancers. Acute lymphoblastic leukemia (ALL) is a prevalent kind of leukemia among children. In this study, we aimed at evaluate the role of MAGI2-AS3 in ALL and its underlying mechanisms.Methods: qPCR was adopted to determine MAGI2-AS3, miR-452-5p, and FOXN3 expression. The malignant properties of ALL cells were assessed by CCK8 assay and flow cytometry analysis. The glucose uptake, lactate production, and ATP level were measured to evaluate glycolysis. Western blotting was performed to detect PCNA, Bcl-2, Bax, and HK2 protein levels. The interaction between MAGI2-AS3/FOXN3 and miR-452-5p was validated by luciferase reporter assay. The in vivo growth of ALL cells was determined in xenograft model.Results: MAGI2-AS3 was strikingly down-regulated in ALL samples and cells. Overexpression of MAGI2-AS3 restrained growth, glycolysis and triggered apoptosis of ALL cells. Mechanistically, MAGI2-AS3 could sponge miR-452-5p to up-regulate FOXN3. Silencing of FOXN3 abolished the anti-tumor effect of MAGI2-AS3. Finally, MAGI2-AS3 suppressed the in vivo growth of ALL cells via modulating miR-452-5p/FOXN3 axis. Conclusions: Our findings demonstrate that MAGI2-AS3 delays the progression of ALL by regulating miR-452-5p/FOXN3 signaling pathway.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-13
Author(s):  
Weiwei Liu ◽  
Dongmei Yao ◽  
Bo Huang

Abstract Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ling Zhou ◽  
Xiao-li Xu

<b><i>Background:</i></b> Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. <b><i>Methods:</i></b> Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. <b><i>Results:</i></b> The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. <b><i>Conclusion:</i></b> ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xibao Hu ◽  
Lei Zhang ◽  
Jingjing Tian ◽  
Junhong Ma

Abstract Background and objectives Long non-coding RNA (lncRNA) prostate androgen-regulated transcript 1 (PART1) was previously shown to exert an oncogenic role in several human cancers. However, whether PART1 is associated with the malignant progression of pancreatic cancer remains unclear. In the current study, we aimed to identify the role and potential mechanism of PART1 in pancreatic cancer. Methods qRT-PCR was applied to detect PART1 expression in 45 cases of pancreatic cancer patients. The chi-square test was performed to assess the association between PART1 expression and clinicopathologic features, and Kaplan-Meier method was applied to evaluate overall survival. In vitro CCK-8, transwell invasion, and flow cytometry assays were applied to detect the effects of PART1 on cell proliferation, invasion, and apoptosis, respectively. Luciferase reporter and RNA immunoprecipitation assays were used to identify the regulatory mechanism between PART1 and miR-122. Results PART1 expression was upregulated in pancreatic cancer tissues and cell lines. High PART1 expression was closely correlated with tumor size, T classification, clinical stage, and vascular invasion, and predicted a poor overall survival. PART1 knockdown significantly suppressed cell proliferation and invasion abilities of pancreatic cancer but promoted cell apoptosis. PART1 was found to serve as a molecular sponge of miR-122, and miR-122 inhibition partially reversed the inhibitory phenotypes of PART1 knockdown on pancreatic cancer cells. Conclusions PART1 promotes the malignant progression of pancreatic cancer by sponging miR-122. The PART1/miR-122 axis might be a promising target for anticancer therapy in patients with pancreatic cancer.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Qingjuan Meng ◽  
Ningning Wang ◽  
Guanglan Duan

Abstract Background X inactivation-specific transcript (XIST) is the long non-coding RNA (lncRNA) related to cancer, which is involved in the development and progression of various types of tumor. However, up to now, the exact role and molecular mechanism of XIST in the progression of ovarian cancer are not clear. We studied the function of XIST in ovarian cancer cells and clinical tumor specimens. Methods RT-qPCR was performed to detect the expression levels of miR-335 and BCL2L2 in ovarian cancer cells and tissues. MTT and transwell assays were carried out to detect cell proliferation, migration, and invasion abilities. Western blot was performed to analyze the expression level of BCL2L2. The interaction between miR-335 and XIST/BCL2L2 was confirmed using a luciferase reporter assay. Results The inhibition of XIST can inhibit the proliferation invasion and migration of human ovarian cancer cells. In addition, the miR-335/BCL2L2 axis was involved in the functions of XIST in ovarian cancer cells. These results suggested that XIST could regulate tumor proliferation and invasion and migration via modulating miR-335/BCL2L2. Conclusion XIST might be a carcinogenic lncRNA in ovarian cancer by regulating miR-335, and it can serve as a therapeutic target in human ovarian cancer.


Sign in / Sign up

Export Citation Format

Share Document