scholarly journals Quercetin Impact in Pancreatic Cancer: An Overview on Its Therapeutic Effects

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Parina Asgharian ◽  
Abbas Pirpour Tazehkand ◽  
Saiedeh Razi Soofiyani ◽  
Kamran Hosseini ◽  
Miquel Martorell ◽  
...  

Pancreatic cancer (PC) is a lethal malignancy cancer, and its mortality rates have been increasing worldwide. Diagnosis of this cancer is complicated, as it does not often present symptoms, and most patients present an irremediable tumor having a 5-year survival rate after diagnosis. Regarding treatment, many concerns have also been raised, as most tumors are found at advanced stages. At present, anticancer compounds-rich foods have been utilized to control PC. Among such bioactive molecules, flavonoid compounds have shown excellent anticancer abilities, such as quercetin, which has been used as an adjunctive or alternative drug to PC treatment by inhibitory or stimulatory biological mechanisms including autophagy, apoptosis, cell growth reduction or inhibition, EMT, oxidative stress, and enhancing sensitivity to chemotherapy agents. The recognition that this natural product has beneficial effects on cancer treatment has boosted the researchers’ interest towards more extensive studies to use herbal medicine for anticancer purposes. In addition, due to the expensive cost and high rate of side effects of anticancer drugs, attempts have been made to use quercetin but also other flavonoids for preventing and treating PC. Based on related studies, it has been found that the quercetin compound has significant effect on cancerous cell lines as well as animal models. Therefore, it can be used as a supplementary drug to treat a variety of cancers, particularly pancreatic cancer. This review is aimed at discussing the therapeutic effects of quercetin by targeting the molecular signaling pathway and identifying antigrowth, cell proliferation, antioxidative stress, EMT, induction of apoptotic, and autophagic features.

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1044
Author(s):  
Monica Bucciantini ◽  
Manuela Leri ◽  
Pamela Nardiello ◽  
Fiorella Casamenti ◽  
Massimo Stefani

Oxidative stress and inflammation triggered by increased oxidative stress are the cause of many chronic diseases. The lack of anti-inflammatory drugs without side-effects has stimulated the search for new active substances. Plant-derived compounds provide new potential anti-inflammatory and antioxidant molecules. Natural products are structurally optimized by evolution to serve particular biological functions, including the regulation of endogenous defense mechanisms and interaction with other organisms. This property explains their relevance for infectious diseases and cancer. Recently, among the various natural substances, polyphenols from extra virgin olive oil (EVOO), an important element of the Mediterranean diet, have aroused growing interest. Extensive studies have shown the potent therapeutic effects of these bioactive molecules against a series of chronic diseases, such as cardiovascular diseases, diabetes, neurodegenerative disorders and cancer. This review begins from the chemical structure, abundance and bioavailability of the main EVOO polyphenols to highlight the effects and the possible molecular mechanism(s) of action of these compounds against inflammation and oxidation, in vitro and in vivo. In addition, the mechanisms of inhibition of molecular signaling pathways activated by oxidative stress by EVOO polyphenols are discussed, together with their possible roles in inflammation-mediated chronic disorders, also taking into account meta-analysis of population studies and clinical trials.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Yizhuo Wang ◽  
Meng Zhao ◽  
Shuyun Liu ◽  
Jun Guo ◽  
Yanrong Lu ◽  
...  

Abstract Macrophages (Mφ) are primary innate immune cells that exhibit diverse functions in response to different pathogens or stimuli, and they are extensively involved in the pathology of various diseases. Extracellular vesicles (EVs) are small vesicles released by live cells. As vital messengers, macrophage-derived EVs (Mφ-EVs) can transfer multiple types of bioactive molecules from macrophages to recipient cells, modulating the biological function of recipient cells. In recent years, Mφ-EVs have emerged as vital mediators not only in the pathology of multiple diseases such as inflammatory diseases, fibrosis and cancers, but also as mediators of beneficial effects in immunoregulation, cancer therapy, infectious defense, and tissue repair. Although many investigations have been performed to explore the diverse functions of Mφ-EVs in disease pathology and intervention, few studies have comprehensively summarized their detailed biological roles as currently understood. In this review, we briefly introduced an overview of macrophage and EV biology, and primarily focusing on current findings and future perspectives with respect to the pathological and therapeutic effects of Mφ-EVs in various diseases.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 474 ◽  
Author(s):  
Carl Randall Harrell ◽  
Nemanja Jovicic ◽  
Valentin Djonov ◽  
Vladislav Volarevic

Mesenchymal stem cells (MSC) are, due to their immunosuppressive and regenerative properties, used as new therapeutic agents in cell-based therapy of inflammatory and degenerative diseases. A large number of experimental and clinical studies revealed that most of MSC-mediated beneficial effects were attributed to the effects of MSC-sourced exosomes (MSC-Exos). MSC-Exos are nano-sized extracellular vesicles that contain MSC-derived bioactive molecules (messenger RNA (mRNA), microRNAs (miRNAs)), enzymes, cytokines, chemokines, and growth factors) that modulate phenotype, function and homing of immune cells, and regulate survival and proliferation of parenchymal cells. In this review article, we emphasized current knowledge about molecular and cellular mechanisms that were responsible for MSC-Exos-based beneficial effects in experimental models and clinical trials. Additionally, we elaborated on the challenges of conventional MSC-Exos administration and proposed the use of new bioengineering and cellular modification techniques which could enhance therapeutic effects of MSC-Exos in alleviation of inflammatory and degenerative diseases.


Author(s):  
Ilma Robo

The treatment of periodontal diseases, mainly of their origin, with the most common clinical manifestation in form of gingival inflammation, is manifold and powerful, including: mechanical therapy, antibiotic, antiseptic and various approaches to treatment, which are recommended to be used within a short period of time. New therapeutic approaches have been proven as alternative treatment to conventional therapy, or in combination with conventional therapies, to reduce the number of periodontopathic pathogens in gingival sulcus. HBOT has a detrimental effect on periodontal microorganisms, as well as beneficial effects on the healing of periodontal tissue, increasing oxygen pressure in gingival pockets. Our study is aimed at reviewing the current published literature on hyperbaric oxygen therapy and focuses on role of HBOT as a therapeutic measure for the individual with periodontal disease in general and for the impact on the recovery of gingival inflammation. HBOT and periodontal treatment together, reduce up to 99% of the gram-negative anaerobic load of subgingival flora. HBOT, significantly reduces subgingival anaerobic flora. Clinical effects in 2-year follow-up of treated patients are sensitive. Reduction of gingival hemorrhage indexes, depth of peritoneum, plaque index, occurs in cases of combination of HBOT and detraction. Reduced load persists up to 2 months after therapy. The significant increase in connective tissue removal starts at the end of 2nd week, to achieve the maximum in week 3-6 of application. HBOT used for re-implantation, stimulates the healing of periodontal membrane, pulp, prevents root resorption, healing of periodontal lining tissues. HBOT, significantly reduces the hemorrhage index with 1.2 value difference, 0.7mm probe depth, reduces gingival fluid by 2. HGH exposure is increased by gingival blood flow, with a difference of 2 in measured value. The therapeutic effects of HBOT in the value of the evaluation index can be saved up to 1-year post treatment.


Author(s):  
Rakshith K. R. ◽  
Shivakumar . ◽  
Kaushal Sinha ◽  
Vijeth Kumar L. A.

Yoga is an ancient practice with Eastern roots that involves both physical postures (Asanas) and breathing techniques (Pranayamas). Yoga therapy for male sexual problems can effectively be treated through Yoga therapy, particularly with the help of Yoga poses and breathing exercises, Yoga has proven itself highly very effective in the treatment of a number of incurable and sometimes terminable diseases. Then again, Yoga's therapeutic effects are just a spin-off and supplementary. Yoga which has proved to be very effective in the treatment of many impossible and incurable diseases, the therapeutic effect of Yoga is only a by product and incidental. Problems related to sex can very well be handled with Yoga as most often these problems are more related to the mind than body. Either they are caused by lack of confidence or stress or fatigue or fear and very few times some physical cause is there. There is also a cognitive component focusing on meditation and concentration, which aids in achieving the goal of union between the self and the spiritual. Although numerous empirical studies have found a beneficial effect of Yoga on different aspects of physical and psychological functioning, claims of Yoga's beneficial effects on sexuality derive from a rich but no empirical literature. The goal of this article is to review the philosophy and forms of Yoga, to review the no empirical and (limited) empirical literatures linking Yoga with enhanced sexuality, and to propose some future research avenues focusing on Yoga as a treatment for sexual disorder.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuejie Gao ◽  
Bo Li ◽  
Anqi Ye ◽  
Houcai Wang ◽  
Yongsheng Xie ◽  
...  

Abstract Background Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. Methods We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. Results The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. Conclusion The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruijie Zeng ◽  
Jinghua Wang ◽  
Zewei Zhuo ◽  
Yujun Luo ◽  
Weihong Sha ◽  
...  

AbstractNecrotizing enterocolitis (NEC) is a devastating disease predominately affecting neonates. Despite therapeutic advances, NEC remains the leading cause of mortality due to gastrointestinal conditions in neonates. Stem cells have been exploited in various diseases, and the application of different types of stem cells in the NEC therapy is explored in the past decade. However, stem cell transplantation possesses several deficiencies, and exosomes are considered potent alternatives. Exosomes, especially those derived from stem cells and breast milk, demonstrate beneficial effects for NEC both in vivo and in vitro and emerge as promising options for clinical practice. In this review, the function and therapeutic effects of stem cells and exosomes for NEC are investigated and summarized, which provide insights for the development and application of novel therapeutic strategies in pediatric diseases. Further elucidation of mechanisms, improvement in preparation, bioengineering, and administration, as well as rigorous clinical trials are warranted.


2021 ◽  
pp. 026988112098642
Author(s):  
Rafael Guimarães dos Santos ◽  
Jaime EC Hallak ◽  
Glen Baker ◽  
Serdar Dursun

Major depressive disorder (MDD) is among the most prevalent mental health disorders worldwide, and it is associated with a reduced quality of life and enormous costs to health care systems. Available drug treatments show low-to-moderate response in most patients, with almost a third of patients being non-responders (treatment-resistant). Furthermore, most currently available medications need several weeks to achieve therapeutic effects, and the long-term use of these drugs is often associated with significant unwanted side effects and resultant reductions in treatment compliance. Therefore, more effective, safer, and faster-acting antidepressants with enduring effects are needed. Together with ketamine, psychedelics (or classic or serotoninergic hallucinogens) such as lysergic acid diethylamide (LSD), psilocybin, and ayahuasca are among the few compounds with recent human evidence of fast-acting antidepressant effects. Several studies in the 1950s to 1970s reported antidepressive and anxiolytic effects of these drugs, which are being confirmed by modern trials (LSD, one trial; psilocybin, five trials; ayahuasca, two trials). The effects of these drugs appear to be produced primarily by their agonism at serotonin (5-hydroxytryptamine, 5-HT) receptors, especially the 5-HT2A receptor. Considering the overall burden of MDD and the necessity of new therapeutic options, the promising (but currently limited) evidence of safety and efficacy of psychedelics has encouraged the scientific community to explore more fully their beneficial effects in MDD.


2021 ◽  
Vol 22 (2) ◽  
pp. 956
Author(s):  
Marlena Typiak ◽  
Agnieszka Piwkowska

Klotho was initially introduced as an antiaging molecule. Klotho deficiency significantly reduces lifespan, and its overexpression extends it and protects against various pathological phenotypes, especially renal disease. It was shown to regulate phosphate and calcium metabolism, protect against oxidative stress, downregulate apoptosis, and have antiinflammatory and antifibrotic properties. The course of diabetes mellitus and diabetic nephropathy resembles premature cellular senescence and causes the activation of various proinflammatory and profibrotic processes. Klotho was shown to exert many beneficial effects in these disorders. The expression of Klotho protein is downregulated in early stages of inflammation and diabetic nephropathy by proinflammatory factors. Therefore, its therapeutic effects are diminished in this disorder. Significantly lower urine levels of Klotho may serve as an early biomarker of renal involvement in diabetes mellitus. Recombinant Klotho administration and Klotho overexpression may have immunotherapeutic potential for the treatment of both diabetes and diabetic nephropathy. Therefore, the current manuscript aims to characterize immunopathologies occurring in diabetes and diabetic nephropathy, and tries to match them with antiinflammatory actions of Klotho. It also gives reasons for Klotho to be used in diagnostics and immunotherapy of these disorders.


Sign in / Sign up

Export Citation Format

Share Document