scholarly journals Antimicrobial Resistance of Escherichia coli from Broilers, Pigs, and Cattle in the Greater Kumasi Metropolis, Ghana

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Rita Ohene Larbi ◽  
Linda Aurelia Ofori ◽  
Augustina Angelina Sylverken ◽  
Matilda Ayim-Akonor ◽  
Kwasi Obiri-Danso

Globally, resistance to antimicrobial drugs in food animals is on the rise. Escherichia coli of livestock, though commensal in nature, serves as reservoir for antimicrobial resistance genes with the potential of disseminating them. This study sought to examine the antimicrobial resistance profiles of Escherichia coli in broilers, pigs, and cattle in the Kumasi Metropolis and undertake molecular characterisation of the resistances. Faecal E. coli isolates (n = 48) were obtained from 10 broiler farms, (n = 43) from 15 pig farms, and (n = 42) from cattle from the Kumasi Abattoir using standard bacteriological techniques. The Kirby–Bauer disc diffusion method was employed in testing the sensitivities of 133 E. coli isolates to 15 antimicrobials. All 48 isolates from broilers presented no resistance to amoxicillin/clavulanic acid and ceftiofur. A 100% resistance to meropenem was observed in pig and cattle isolates. Multidrug resistance (MDR) across animal groups was 95.8% (n = 46), 95.3% (n = 41), and 64.3% (n = 27) for broilers, pigs, and cattle, respectively. Twenty-eight isolates presenting phenotypic resistance to aminopenicillins and cephalosporins were screened for the presence of extended-spectrum beta-lactamase (ESBL) genes by PCR. One isolate from poultry and another from cattle tested positive for the blaCTX-M ESBL gene. There were no positives for the blaTEM and blaSHV ESBL genes. Commensal E. coli of food animal origin represents an important reservoir of antimicrobial resistance that transfers resistance to pathogenic and nonpathogenic microbes affecting humans and animals. There is an urgent need to institute routine surveillance for the establishment of the mechanisms and molecular orientation of resistance in these organisms.

2009 ◽  
Vol 72 (5) ◽  
pp. 1082-1088 ◽  
Author(s):  
AHLEM JOUINI ◽  
KARIM BEN SLAMA ◽  
YOLANDA SÁENZ ◽  
NAOUEL KLIBI ◽  
DANIELA COSTA ◽  
...  

Phenotypic and genotypic characterization of antimicrobial resistance was conducted for 98 Escherichia coli isolates recovered from 40 food samples of animal origin (poultry, sheep, beef, fish, and others) obtained in supermarkets and local butcheries in Tunis during 2004 and 2005. Susceptibility to 15 antimicrobial agents was tested by disk diffusion and agar dilution methods, the mechanisms of resistance were evaluated using PCR and sequencing methods, and the clonal relationship among isolates was evaluated using pulsed-field gel electrophoresis. High resistance was detected to tetracycline, sulphonamides, nalidixic acid, ampicillin, streptomycin, and trimethoprim-sulfamethoxazole (29 to 43% of isolates), but all isolates were susceptible to cefotaxime, ceftazidime, cefoxitin, azthreonam, and amikacin. One-third of the isolates had multiresistant phenotypes (resistance to at least five different families of antimicrobial agents). Different variants of blaTEM, tet, sul, dfrA, aadA, and aac(3) genes were detected in most of the strains resistant to ampicillin, tetracycline, sulphonamide, trimethoprim, streptomycin, and gentamicin, respectively. The presence of class 1 and class 2 integrons was studied in 15 sulphonamide-resistant unrelated E. coli strains, and 14 of these strains harbored class 1 integrons with five different arrangements of gene cassettes, and a class 2 integron with the dfrA1 + sat + aadA1 arrangement was found in one strain. This study revealed the high diversity of antimicrobial resistance genes, some of them included in integrons, in E. coli isolates of food origin.


2019 ◽  
Author(s):  
Liseth Salinas ◽  
Paúl Cárdenas ◽  
Timothy J. Johnson ◽  
Karla Vasco ◽  
Jay Graham ◽  
...  

ABSTRACTThe increased prevalence of antimicrobial resistance (AMR) among Enterobacteriaceae has had major clinical and economic impacts in human medicine. Many of the multi-drug resistant (MDR) Enterobacteriaceae found in humans are community-acquired and linked to food animals (i.e. livestock raised for meat and dairy products). In this study, we examined whether numerically dominant, commensal Escherichia coli strains from humans (n=63 isolates) and domestic animals (n=174 isolates) in the same community and with matching phenotypic AMR patterns, were clonally related or shared the same plasmids. We identified 25 multi-drug resistant isolates (i.e. resistant to 3 or more antimicrobial classes) that shared identical phenotypic resistance patterns. We then investigated the diversity of E. coli clones, AMR genes and plasmids carrying the AMR genes using conjugation, replicon typing and whole genome sequencing. None of the MDR E. coli isolates (from children and domestic animals) analyzed were clonal. While the majority of isolates shared the same antimicrobial resistance genes and replicons, DNA sequencing indicated that these genes and replicons were found on different plasmid structures. Our findings suggest that nonclonal resistance gene dissemination is common in this community and that diverse plasmids carrying AMR genes presents a significant challenge for understanding the movement of AMR in a community.IMPORTANCEEven though Escherichia coli strains may share nearly identical AMR profiles, AMR genes, and overlap in space and time, the diversity of clones and plasmids challenges to research that aims to identify sources of AMR. Horizontal gene transfer appears to play a much larger role than clonal expansion in the spread of AMR in the community.


2021 ◽  
Vol 36 (1) ◽  
pp. 15-22
Author(s):  
C.A. Newberry ◽  
J.K. Lane ◽  
B.A. Byrne ◽  
M. Mwanzalila ◽  
T. Hamza ◽  
...  

Antimicrobial resistance is a serious and escalating threat to global health. This study established a baseline antimicrobial resistance profile and prevalence for cloacal Escherichia coli in chickens in central Tanzania. Animal husbandry practices, flock size, and chicken breed were recorded for risk factor evaluation to elucidate potential drivers of resistance across populations. Cloacal samples were collected from poultry in Iringa, Tanzania, and E. coli isolates cultured were then tested for susceptibility to seven medically important antimicrobial drugs: ampicillin, amoxicillin-clavulanate, cefoxitin, enrofloxacin, gentamicin, sulfamethoxazole-trimethoprim, and tetracycline using the Kirby-Bauer disk diffusion method. Over 94% of the 59 E. coli isolates tested were resistant to at least one antimicrobial drug, and over 61% of isolates were resistant to three or more classes of antimicrobial drugs. The highest prevalence of resistance found was to tetracycline and sulfamethoxazole-trimethoprim (88% and 86%, respectively), which were used regularly on many sampled chickens. Previous antimicrobial usage emerged as the only significant risk factor associated with increased detection of multi-drug resistant E. coli. Further surveillance and educational outreach about antimicrobial resistance and stewardship is recommended to reduce antimicrobial drug use and to limit the potential spread of resistance to antimicrobial drugs in Tanzania.


2009 ◽  
Vol 75 (5) ◽  
pp. 1373-1380 ◽  
Author(s):  
Leigh B. Rosengren ◽  
Cheryl L. Waldner ◽  
Richard J. Reid-Smith

ABSTRACT Escherichia coli often carries linked antimicrobial resistance genes on transmissible genetic elements. Through coselection, antimicrobial use may select for unrelated but linked resistance or virulence genes. This study used unconditional statistical associations to investigate the relationships between antimicrobial resistance phenotypes and antimicrobial resistance genes in 151 E. coli isolates from healthy pigs. Phenotypic resistance to each drug was significantly associated with phenotypic resistance to at least one other drug, and every association found that the probability of observing the outcome resistance was increased by the presence of the predictor resistance. With one exception, each statistical association that was identified between a pair of resistance genes had a corresponding significant association identified between the phenotypes mediated by those genes. This suggests that associations between resistance phenotypes might predict coselection. If this hypothesis is confirmed, evaluation of the associations between resistance phenotypes could improve our knowledge of coselection dynamics and provide a cost-effective way to evaluate existing data until large-scale genotypic data collection becomes feasible. This could enable policy makers and users of antimicrobials to consider coselection in antimicrobial use decisions. This study also considered the unconditional relationships between resistance and virulence genes in E. coli from healthy pigs (aidA-1, eae, elt, estA, estB, fedA1, stx1, and stx2). Positive statistical associations would suggest that antimicrobial use may select for virulence in bacteria that may contaminate food or cause diarrhea in pigs. Fortunately, the odds of detecting a virulence gene were rarely increased by the presence of an antimicrobial resistance gene. This suggests that on-farm antimicrobial use did not select for the examined virulence factors in E. coli carried by this population of healthy pigs.


Author(s):  
Anil Poudel ◽  
Terri Hathcock ◽  
Patrick Butaye ◽  
Yuan Kang ◽  
Stuart Price ◽  
...  

Background: Antimicrobial resistance is rising globally at an alarming rate. While multiple active surveillance programs have been established to monitor the antimicrobial resistance, studies on the environmental link to antimicrobial spread are lacking. Methods: A total of 493 flies were trapped from a dairy unit, a dog kennel, a poultry farm, a beef cattle unit, an urban trash facility and an urban downtown area to isolate Escherichia coli, Klebsiella pneumoniae and Staphylococcus spp. for antimicrobial susceptibility testing and molecular characterization. Results: E. coli, K. pneumoniae and coagulase-negative Staphylococcus were recovered from 43.9%, 15.5% and 66.2% of the houseflies, and 26.0%, 19.2%, 37.0% of the blowflies, respectively. In total, 35.3% of flies were found to harbor antimicrobial-resistant bacteria and 9.0% contained multidrug-resistant isolates. Three Staphylococcus aureus isolates were recovered from blowflies while three extended spectrum beta lactamase (ESBL)-carrying E. coli and one ESBL-carrying K. pneumoniae were isolated from houseflies. Whole genome sequencing identified the antimicrobial resistance genes blaCMY-2 and blaCTXM-1 as ESBLs. Conclusion: Taken together, our data indicate that flies can be used as indicators for environmental contamination of antimicrobial resistance. More extensive studies are warranted to explore the sentinel role of flies for antimicrobial resistance.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Liseth Salinas ◽  
Paúl Cárdenas ◽  
Timothy J. Johnson ◽  
Karla Vasco ◽  
Jay Graham ◽  
...  

ABSTRACT The increased prevalence of antimicrobial resistance (AMR) among Enterobacteriaceae has had major clinical and economic impacts on human medicine. Many of the multidrug-resistant (multiresistant) Enterobacteriaceae found in humans are community acquired, and some of them are possibly linked to food animals (i.e., livestock raised for meat and dairy products). In this study, we examined whether numerically dominant commensal Escherichia coli strains from humans (n = 63 isolates) and domestic animals (n = 174 isolates) in the same community and with matching phenotypic AMR patterns were clonally related or shared the same plasmids. We identified 25 multiresistant isolates (i.e., isolates resistant to more than one antimicrobial) that shared identical phenotypic resistance patterns. We then investigated the diversity of E. coli clones, AMR genes, and plasmids carrying the AMR genes using conjugation, replicon typing, and whole-genome sequencing. All of the multiresistant E. coli isolates (from children and domestic animals) analyzed had at least 90 or more whole-genome SNP differences between one another, suggesting that none of the strains was recently transferred. While the majority of isolates shared the same antimicrobial resistance genes and replicons, DNA sequencing indicated that these genes and replicons were found on different plasmid structures. We did not find evidence of the clonal spread of AMR in this community: instead, AMR genes were carried on diverse clones and plasmids. This presents a significant challenge for understanding the movement of AMR in a community. IMPORTANCE Even though Escherichia coli strains may share nearly identical phenotypic AMR profiles and AMR genes and overlap in space and time, the diversity of clones and plasmids challenges research that aims to identify sources of AMR. Horizontal gene transfer appears to play a more significant role than clonal expansion in the spread of AMR in this community.


2021 ◽  
Vol 8 ◽  
Author(s):  
Cui-Yi Liao ◽  
Balamuralikrishnan Balasubramanian ◽  
Jin-Ju Peng ◽  
Song-Ruo Tao ◽  
Wen-Chao Liu ◽  
...  

Antimicrobial resistance (AMR) has become a major concern worldwide. To evaluate the AMR of Escherichia coli in aquaculture farms of Zhanjiang, China, a total of 90 samples from the water, soil, and sediment of three aquaculture farms (farms I, II, and III) in Zhanjiang were collected, and 90 strains of E. coli were isolated for drug resistance analysis and AMR gene detection. The results indicated that the isolated 90 strains of E. coli have high resistance rates to penicillin, amoxicillin, ampicillin, tetracycline, compound sulfamethoxazole, sulfisoxazole, chloramphenicol, florfenicol, and rifampin (≥70%). Among these antimicrobial drugs, the resistance rate to rifampicin is as high as 100%. Among the isolated 90 strains of E. coli, all of them were resistant to more than two kinds of antimicrobial drugs, the number of strains resistant to nine kinds of drugs was the largest (19 strains), and the most resistant strain showed resistance to 16 kinds of antibacterial drugs. Regarding the AMR genes, among the three aquaculture farms, the most resistance genes were detected in farm II (28 species). The detection rate of blaTEM, blaCIT, blaNDM, floR, OptrA, cmlA, aphA1, Sul2, oqxA, and qnrS in 90 isolates of E. coli was high (≥50%). The detection rate of carbapenem-resistant genes, such as blaKPC, blaIMP, and cfr, was relatively lower ( ≤ 30%), and the detection rate of mcr2 was the lowest (0). At least four AMR genes were detected for each strain, and 15 AMR genes were detected at most. Among them, the number of strains that carried 10 AMR genes was the largest (15 strains). Finally, a correlation analysis found that the AMR genes including blaTEM, blaCIT, floR, OptrA, cmlA, aac(3)-II, Sul2, ereA, ermB, oqxB, qnrA, mcr1, and mcr2 had a high correlation rate with drug resistance (≥50%). To summarize, the 90 strains of E. coli isolated from water, surrounding soil, and sediment samples showed resistance to multi-antimicrobial drugs and carried various antimicrobial resistance genes. Thus, it is essential to strengthen the rational use of antimicrobial drugs, especially the amide alcohol drugs, and control the AMR in the aquaculture industry of Zhanjiang, China.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 262
Author(s):  
Isabel Carvalho ◽  
Nadia Safia Chenouf ◽  
Rita Cunha ◽  
Carla Martins ◽  
Paulo Pimenta ◽  
...  

The aim of the study was to analyze the mechanisms of resistance in extended-spectrum beta-lactamase (ESBL)- and acquired AmpC (qAmpC)-producing Escherichia coli isolates from healthy and sick cats in Portugal. A total of 141 rectal swabs recovered from 98 sick and 43 healthy cats were processed for cefotaxime-resistant (CTXR) E. coli recovery (in MacConkey agar supplemented with 2 µg/mL cefotaxime). The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method was used for E. coli identification and antimicrobial susceptibility was performed by a disk diffusion test. The presence of resistance/virulence genes was tested by PCR sequencing. The phylogenetic typing and multilocus sequence typing (MLST) were determined by specific PCR sequencing. CTXRE. coli isolates were detected in seven sick and six healthy cats (7.1% and 13.9%, respectively). Based on the synergy tests, 11 of 13 CTXRE. coli isolates (one/sample) were ESBL-producers (ESBL total rate: 7.8%) carrying the following ESBL genes: blaCTX-M-1 (n = 3), blaCTX-M-15 (n = 3), blaCTX-M-55 (n = 2), blaCTX-M-27 (n = 2) and blaCTX-M-9 (n = 1). Six different sequence types were identified among ESBL-producers (sequence type/associated ESBLs): ST847/CTX-M-9, CTX-M-27, CTX-M-1; ST10/CTX-M-15, CTX-M-27; ST6448/CTX-M-15, CTX-M-55; ST429/CTX-M-15; ST101/CTX-M-1 and ST40/CTX-M-1. Three of the CTXR isolates were CMY-2-producers (qAmpC rate: 2.1%); two of them were ESBL-positive and one ESBL-negative. These isolates were typed as ST429 and ST6448 and were obtained in healthy or sick cats. The phylogenetic groups A/B1/D/clade 1 were detected among ESBL- and qAmpC-producing isolates. Cats are carriers of qAmpC (CMY-2)- and ESBL-producing E. coli isolates (mostly of variants of CTX-M group 1) of diverse clonal lineages, which might represent a public health problem due to the proximity of cats with humans regarding a One Health perspective.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


2011 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Ronak Bakhtiari ◽  
Jalil Fallah Mehrabadi ◽  
Hedroosha Molla Agamirzaei ◽  
Ailar Sabbaghi ◽  
Mohammad Mehdi Soltan Dallal

Resistance to b-lactam antibiotics by gramnegative bacteria, especially <em>Escherichia coli (E. coli)</em>, is a major public health issue worldwide. The predominant resistance mechanism in gram negative bacteria particularly <em>E. coli </em>is via the production of extended spectrum beta lactamase (ESBLs) enzymes. In recent years, the prevalence of b-lactamase producing organisms is increased and identification of these isolates by using disk diffusion method and no-one else is not satisfactory. So, this investigation focused on evaluating the prevalence of ESBL enzymes by disk diffusion method and confirmatory test (Combined Disk). Five hundred clinical samples were collected and 200 <em>E. coli </em>isolates were detected by standard biochemical tests. To performing initial screening of ESBLs was used from Disk diffusion method on <em>E. coli </em>isolates. A confirmation test (Combined Disk method) was performed on isolates of resistant to cephalosporin's indicators. Up to 70% isolates exhibited the Multi Drug Resistance phenotype. In Disk diffusion method, 128(64%) <em>E. coli </em>isolates which resistant to ceftazidime and cefotaxime while in Combined Disk, among 128 screened isolates, 115 (89.8%) isolates were detected as ESBLs producers. This survey indicate beta lactamase enzymes are playing a significant role in antibiotic resistance and correct detection of them in phenotypic test by using disk diffusion and combined Disk is essential for accurate recognition of ESBLs.


Sign in / Sign up

Export Citation Format

Share Document