scholarly journals Mechanism of Intestinal Flora and Proteomics on Regulating Immune Function of Durio zibethinus Rind Polysaccharide

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Huimin Jiang ◽  
Jinmei Wang ◽  
Qiongxin Liang ◽  
Shengjun Jiang ◽  
Changyang Ma ◽  
...  

In this study, cyclophosphamide was injected intraperitoneally to establish an immunosuppressive mouse model to study the immune regulating effects of Durio zibethinus Murr rind polysaccharide (DZMP) through proteomics and intestinal flora. The results showed that the thymus and spleen indexes of the high-dose DZMP (200 mg/kg) group were significantly increased, and the tissue structure of the spleen was improved compared with the model group ( P < 0.01 ). The contents of IL-2, IL-4, IL-6, and TNF-α in the high-dose group of DZMP were significantly increased ( P < 0.001 ). Activities of acid phosphatase (ACP), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) were increased in serum ( P < 0.01 ). In the liver, catalase (CAT) activity was increased ( P < 0.001 ) while the malondialdehyde (MDA) content was decreased and immune activity was increased ( P < 0.001 ). Proteomics studies showed that the drug group could significantly increase the low-affinity immunoglobulin gamma Fc receptor III (FcγRIII) protein and protein kinase C-α (PKC-α) compared with the model group ( P < 0.001 ). In addition, the result showed that those proteins were likely involved in the regulation of the metabolic pathways of autoimmune thyroid disease, Staphylococcus aureus infection, and NF-κB signaling pathway. Intestinal microbial studies showed that short-chain fatty acid (SCFA) content was increased as well as the relative abundance of beneficial bacteria Akkermansia, Bacteroides, and Paraprevotella, while the relative abundance of Ruminococcus and Oscillospira was decreased compared with the model group ( P < 0.001 ). The results showed that DZMP might play a beneficial role in immune regulation by improving intestinal flora.

Medicines ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 106 ◽  
Author(s):  
Yuanjun Deng ◽  
Kairui Tang ◽  
Runsen Chen ◽  
Yajie Liu ◽  
Huan Nie ◽  
...  

Background: In traditional Chinese medicine, the Shugan-Jianpi recipe is often used in the treatment of nonalcoholic fatty liver disease (NAFLD). This study aimed to explore the mechanism of the Shugan-Jianpi recipe in relation to rats with NAFLD induced by a high-fat diet. Methods: Rats were randomly divided into eight groups: normal group (NG), model group (MG), low-dose Chaihu–Shugan–San group (L-CG), high-dose Chaihu–Shugan–San group (H-CG), low-dose Shenling–Baizhu–San group (L-SG), high-dose Shenling–Baizhu–San group (H-SG), low dose of integrated-recipes group (L-IG), and high dose of integrated-recipes group (H-IG). After 26 weeks, a lipid profile, aspartate, and alanine aminotransferases in serum were detected. The serum levels of inflammatory factors including interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha (TNF-α) were analyzed using the enzyme linked immunosorbent assay (ELISA) method. Hepatic pathological changes were observed with hematoxylin-eosin (HE) and oil red O staining. The expression of the p38 mitogen-activated protein kinases (MAPK)/nuclear factor-κB (NF-κB) pathway was detected by quantitative real-time PCR and Western blotting. Results: A pathological section revealed that NAFLD rats have been successfully reproduced. Compared with the model group, each treatment group had different degrees of improvement. The Shugan-Jianpi recipe can inhibit the serum levels of IL-1β, IL-6, and TNF-α in NAFLD rats. The expression of mRNA and a protein related to the p38 MAPK/NF-κB signaling pathway were markedly decreased as a result of the Shugan-Jianpi recipe. Conclusions: The Shugan-Jianpi recipe could attenuate NAFLD progression, and its mechanism may be related to the suppression of the p38 MAPK/NF-κB signaling pathway in hepatocytes.


2020 ◽  
Author(s):  
Wenjun Shi ◽  
Fei Yang ◽  
Liting Wang ◽  
Nankun Qin ◽  
Chengxiang Wang ◽  
...  

Abstract BackgroundPlantaginis semen has been widely used as folk medicine and health care food against hyperuricemia (HUA) and gout, but little was known about its pharmacological mechanism. MethodsThe model was established by potassium oxonate intragastric administration. 42 Sprague-Dawley (SD) male rats were randomly divided into the control group, model group, benzbromarone group (10 mg/kg) and three Plantaginis semen groups (n = 7). The Plantaginis semen groups were treated orally with Plantaginis semen at 0.9375, 1.875 and 3.75 g/kg for 28 days. The levels of serum uric acid (UA), creatinine (Cr), triacylglycerol (TG) and tumor necrosis factor-α (TNF-α) were detected using enzyme-linked immunosorbent assay kits. Ultra performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS) was used as the basis for serum lipidomics analysis, and orthogonal partial least squares discriminant analysis (OPLS-DA) was carried out for the pattern recognition and characteristic metabolites identification. The relative levels of critical regulatory factors of urate anion transporter 1(URAT1) and phosphatidylinositol 3-kinase/ protein kinases B (PI3K/Akt) were determined by quantitative real-time polymerase chain reaction (RT-qPCR). ResultsCompared with the model group, the levels of serum UA, Cr, and TG were significantly (p<0.01) decreased in benzbromarone and three Plantaginis semen groups and the level of serum TNF-α was significantly (p<0.05) decreased in benzbromarone and low dose of Plantaginis semen group. With lipidomics analysis, significant lipid metabolic perturbations were observed in HUA rats, 13 metabolites were identified as potential biomarkers and glycerophospholipid metabolism pathway was mostly affected. These perturbations can be partially restored via treatment of benzbromarone and Plantaginis semen. Additionally, the URAT1 and PI3K/Akt mRNA expression levels were significantly decreased (p<0.05) after treatment with benzbromarone and high dose of Plantaginis semen. ConclusionsPlantaginis semen had significant anti-HUA, anti-inflammatory and renal protection effects and could attenuate potassium oxonate-induced HUA through regulation of lipid metabolism disorder. Trial registrationNot applicable


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jiang-tao Niu ◽  
Rui Cao ◽  
Xin-lei Si ◽  
Tian-tian Bian ◽  
Er-dan Xin ◽  
...  

Objective. To compare the changes of chemical components of Hedysari Radix (HR) before and after honey-processing, and to explore the material basis of the difference between HR and honey-processed Hedysari Radix (HPHR) in Buzhong Yiqi. Methods. Different compounds in aqueous extracts of HR and HPHR were analysed by UPLC-MS. A rat model of spleen qi deficiency was established. The rats were treated with different doses of water extracts of HR or HPHR, and pathological differences in spleen tissue, serum levels of D-xylose, gastrin (GAS) and amylase (AMS) interleukin-2 (IL)-2 and tumour necrosis factor-α (TNF-α), as well as spleen and thymus indices, were used as indicators. Differences in the efficacy of HR and HPHR in Buzhong Yiqi were studied. Results. The research showed that compared with the blank group, the spleen tissue of rats in the model group showed spleen tissue damage, which mainly manifested as unclear boundaries between red pulp and white pulp, irregular spleen morphology and irregular arrangement, and the structure of white pulp destruction, less lymphocytes, the number of germinal centers decreased or atrophied. Compared with the model group, the middle and high dose groups of HR and HPHR had protective effects on spleen tissue of spleen-qi deficiency rats, and HPHR had a stronger effect; compared with those in the model group, rats in each treatment group showed remarkably higher serum D-xylose, GAS and AMS levels and thymus and spleen indices, and remarkably lower serum IL-2 and TNF-α levels, among which HPHR group showed better regulation effect than HR group. A total of 16 differential compounds were found in the aqueous extracts of HR and HPHR, of which 10 compounds in HPHR were up regulated, while 6 compounds were down regulated compare to HR. Conclusion. The results indicated that both HR and HPHR can improve spleen qi deficiency syndrome of rats, the pharmacodynamic effect of the latter was better than the former. Differences in components of HR and HPHR potentially leading to variations in efficacy.


Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 740-747
Author(s):  
Jiangning Yin ◽  
Jun Jiang ◽  
Huajun Wang ◽  
Guoyuan Lu

AbstractBackgroundWe aim to investigate the protective effects and potential mechanisms in specneuzhenide (SPE) on renal injury in rats with diabetic nephropathy (DN).ResultsSPE could inhibit the decrease of body weight compared with the model group (P<0.05), and trigger improvement in the renal index (P<0.05). High dose and low dose SPE could trigger a significant decrease in serum IL1β, IL-6 and TNF-α compared with the model group (P<0.05). SPE could attenuate the glomerular lesions in DN rats. SPE induced up-regulation of podocin and CD2AP (P<0.05).ConclusionSPE showed protective effects on renal injury through attenuating the pathological injury and urine protein. This process may be closely related to the modulation of CD2AP and podocin expression.


2020 ◽  
Vol 19 (7) ◽  
pp. 1429-1433
Author(s):  
Jihong Shu ◽  
Zhenjiao Fang ◽  
Xinjun Xiong

Purpose: To investigate the effect of penehyclidine hydrochloride (PHC) on interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), hypoxia inducible factor-1α (HIF-1α), and oxidative stress levels in lung tissues of acute lung injury (ALI) neonatal rats.Methods: 40 male Sprague-Dawley (SD) rats were assigned to model, low-dose PHC, high-dose PHC, and control groups (n = 10). Levels of IL-6, TNF-α and HIF-1α were evaluated by enzyme-linked immunosorbent assay (ELISA). Pulmonary lesions were determined histologically using H&E staining.Results: The lung tissue levels of IL-6, TNF-α and HIF-1α were significantly higher in model rats than in control rats, and significantly lower in PHC-treated rats than in model group, with decrease in levels as PHC dose increased (p < 0.05). The lung tissue activity of MPO and level of MDA in model rats were significantly higher than those in control rats, but significantly lower in the lung tissues of the two PHC groups than in the model group; decrease in levels occurred as PHC dose increased (p < 0.05).Conclusion: PHC decreases the lung and serum levels of IL-6, TNF-α and HIF-1α in a rat model of ALI, and mitigates pulmonary oxidative stress and lung tissue damage. Thus, penehyclidine hydrochloride may be useful to mitigate ALI-induced damage in patients. However, further studies and clinical trials are required to ascertain this Keywords: Penehyclidine hydrochloride, Alveolar septum, Acute lung injury, Inflammatory cells, IL-6, TNF-α, HIF-1α, Oxidative stress


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Yang ◽  
Wenjun Shi ◽  
Liting Wang ◽  
Nankun Qin ◽  
Chengxiang Wang ◽  
...  

Abstract Background Plantaginis Semen has been widely used as folk medicine and health care food against hyperuricemia (HUA) and gout, but its pharmacological mechanism remains unclear. This study investigated the therapeutic mechanism of Plantaginis Semen extract on potassium oxonate -induced HUA rats based on a lipidomics approach. Methods A model of HUA was established by potassium oxonate intragastric administration. 42 Sprague-Dawley (SD) male rats were randomly divided into the control group, model group, benzbromarone group (10 mg/kg) and three Plantaginis Semen groups (n = 7). The Plantaginis Semen groups were treated orally with Plantaginis Semen, 0.9375, 1.875  or 3.75 g/kg for 28 days. The levels of serum uric acid (UA), creatinine (Cr), triacylglycerol (TG) and tumor necrosis factor-α (TNF-α) were  measured using enzyme-linked immunosorbent assay kits. Ultra performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-Q-TOF/MS) was used for the serum lipidomics analysis, multivariate statistical analysis and independent samples t-test were carried out for the pattern recognition and characteristic metabolites identification. The relative levels of critical regulatory factors were determined by quantitative real-time polymerase chain reaction (RT-qPCR). Results Compared with the model group, the levels of serum UA, Cr, TG and TNF-α were significantly (p < 0.05) decreased in benzbromarone and three Plantaginis Semen groups. With lipidomics analysis, significant lipid metabolic perturbations were observed in HUA rats, 13 metabolites were identified as potential biomarkers and glycerophospholipid metabolism pathway was  most affected. These perturbations  were partially restored via treatment of benzbromarone and Plantaginis Semen. Additionally, the mRNA expression levels of urate anion transporter 1 (URAT1) and phosphatidylinositol 3-kinase/protein kinases B (PI3K/Akt) were significantly decreased (p < 0.01) after treatment with benzbromarone and high dose of Plantaginis Semen. Conclusions Plantaginis Semen had significant effects on anti-HUA, anti-inflammatory and renal protection. It attenuated potassium oxonate-induced HUA through regulation of lipid metabolism disorder.


2012 ◽  
Vol 109 (2) ◽  
pp. 263-272 ◽  
Author(s):  
Lei Shi ◽  
Ming Li ◽  
Kenji Miyazawa ◽  
Yun Li ◽  
Masaru Hiramatsu ◽  
...  

The present study investigated the potential health-promoting effects of heat-inactivatedLactobacillus gasseriTMC0356 (TMC0356) on the metabolic syndrome (MS) and the probable mechanisms underlying these effects using an MS rat model. For the purpose of the study, sixty Sprague–Dawley rats were randomly divided into five groups: a control group fed a conventional diet, an MS model group fed a high-fat and high-salt (HFS) diet and three TMC0356 test groups (low-, medium- and high-dose groups) fed an HFS diet supplemented with TMC0356 at 41·8, 83·5 and 167·0 mg/kg body weight (BW) per d, respectively. Food intake and BW were measured weekly. Fasting blood glucose (FBG), lipid profiles and blood pressure (BP) were measured at 0, 5, 10 and 15 weeks. Organ coefficients, immune cell counts and serum insulin, adiponectin, C-reactive protein (CRP), IL-6, TNF-α, IgG and secretory IgA levels were measured at the 15th week after diet intervention. The HFS diet increased the BW, liver or fat:BW ratio, FBG, homeostatic model assessment of insulin resistance, adiponectin, serum LDL-cholesterol and total cholesterol levels and BP (P< 0·01). Average food and energy intakes in the three TMC0356 groups were significantly lower than those of the MS model group. All the metabolic indices, except BP, were markedly improved (P< 0·05) by oral administration of low and medium doses of TMC0356. The thymus index in the medium-dose group and lymphocyte, CRP, IL-6, TNF-α and IgG levels in all the three TMC0356 groups were significantly increased (P< 0·05 orP< 0·01) compared with those in the MS model group. These results suggest that TMC0356 can improve the metabolic characteristics of MS rats by suppressing appetite. Additionally, the enhancement of inflammatory immune response may be, at least in part, the mechanism underlying the health-promoting effects of TMC0356 on the MS.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Xiaoyi Wei ◽  
Wenjing Zong ◽  
Yanbin Gao ◽  
Siyang Peng ◽  
Ke Liu ◽  
...  

Objective. To determine the effects of TLN on glycolipid metabolism, oxidative stress, and intestinal flora in diabetic rat. Materials and Methods. Thirty-five male Sprague-Dawley (SD) rats (180–200 g) were divided into two groups. The normal group was fed a standard-chow diet, whereas, in the model group, diabetes was induced by intraperitoneal administration of streptozotocin (STZ) combined with a high-fat sucrose diet. Then, the model group was randomly allocated to four groups: DM (diabetes model) and TLNH (TLN high dose), TLNL (TLN low dose), and NAC (N-acetylcysteine). Rats in the TLNH, TLNL, and NAC groups were intragastrically administered TLN and NAC for 12 weeks. Subsequently, their weights, fasting glucose levels, serum lipids, serum insulin, serum ROS, and intestinal flora were determined. Results. The weight and intestinal flora abundance of the DM group were significantly lower than those of the normal group, whereas their total serum cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), serum reactive oxygen species (ROS), and serum insulin (INS) levels were significantly higher than those of the normal group. TC and LDL-C levels in the TLNL group and DM group were similar, whereas FBG, INS, and ROS levels in the TLNL group were obviously lower than those in the DM group. Compared with the DM group, there was a significant increase in intestinal flora abundance in the TLNL group. At the phylum level, the ratio of Firmicutes to Bacteroidetes (core microbiota) varied in all groups. However, in the DM group, Firmicutes abundance decreased, whereas that of Bacteroidetes increased. An opposite trend was observed in the TLN-treated groups. Conclusions. TLN, which showed a dose-dependent therapeutic effect, can effectively decrease serum lipid, serum insulin, blood glucose, and serum ROS levels. It can also rebalance the ratio of Firmicutes to Bacteroidetes. Furthermore, the low-dose TLN treatment was most efficacious.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3245 ◽  
Author(s):  
Xue-Wen Li ◽  
Hui-Ping Chen ◽  
Ying-Yan He ◽  
Wei-Li Chen ◽  
Jian-Wen Chen ◽  
...  

Dendrobium is a traditional Chinese herb with anti-diabetic effects and has diverse bibenzyls as well as phenanthrenes. Little is known about Dendrobium polyphenols anti-diabetic activities, so, a rich-polyphenols extract of D. loddigesii (DJP) was used for treatment of diabetic db/db mice; the serum biochemical index and tissue appearance were evaluated. In order to gain an insight into the anti-diabetic mechanism, the oxidative stress index, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and gut microbiota modulation were determined by ELISA, immunohistochemistry or high throughput sequencing 16S rRNA gene. The results revealed that DJP had the effects to decrease the blood glucose, body weight, low density lipoprotein cholesterol (LDL-C) levels and increase insulin (INS) level in the mice. DJP improved the mice fatty liver and diabetic nephropathy. DJP showed the anti-oxidative abilities to reduce the malondialdehyde (MDA) level and increase the contents of superoxide dismutase (SOD), catalase (CAT) as well as glutathione (GSH). DJP exerted the anti-inflammatory effects of decreasing expression of IL-6 and TNF-α. After treatment of DJP, the intestinal flora balance of the mice was ameliorated, increasing Bacteroidetes to Firmicutes ratios as well as the relative abundance of Prevotella/Akkermansia and reducing the relative abundance of S24-7/Rikenella/Escherichia coli. The function’s prediction of gut microbiota indicated that the microbial compositions involved carbohydrate metabolism or lipid metabolism were changed. This study revealed for the first time that DJP improves the mice symptoms of diabetes and complications, which might be due to the effects that DJP induced the decrease of inflammation as well as oxidative stress and improvement of intestinal flora balance.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Danli Kong ◽  
Yan Yan ◽  
Xiao-Yi He ◽  
Huihuang Yang ◽  
BiYu Liang ◽  
...  

Objective. To observe the effects of resveratrol (Res) on the antioxidative function and estrogen level in an Alzheimer’s disease (AD) mouse model. Methods. First, we examined the effects of Res on an AD mice model. SAMP8 mice were selected as the model, and normal-aging SAMR1 mice were used as the control group. The model mice were randomly divided into three groups: a model group, high-dose Res group (40mg/kg, intraperitoneal (ip)), and low-dose Res group (20mg/kg, ip). After receiving medication for 15 days, the mice were subjected to the water maze test to assess their spatial discrimination. The spectrophotometric method was used to detect the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) as well as the malondialdehyde (MDA) content. Quantitative PCR (q-PCR) was used to detect SOD, GSH-Px, CAT, and heme oxygenase-1 (HO-1) mRNA level changes. Western blot analysis detected HO-1 and Nrf2 protein expression. Second, we researched the effect of Res on the estrogen level in the SAMP8 model mice. The model mice were randomly divided into four groups: a model group, estrogen replacement group (0.28 mg/kg, intramuscular (im), estradiol benzoate), high-dose Res group (5 mg/kg, im), and low-dose Res group (2.5 mg/kg, im). The mice were injected, once every three days, for 5 weeks. Q-PCR was used to detect brain tissue mRNA expression changes. Western blot analysis detected ERα, ERβ, and ChAT protein expression. An enzyme-linked immunosorbent assay (ELISA) kit was used to detect the expression of E2 and amyloid β protein (Aβ) in brain tissue. Results. Compared with the control treatment, Res could improve the spatial abilities of the mice to a certain extent and also increase the expression of SOD, GSH-Px, CAT, and HO-1 at the mRNA level (P<0.05). In addition, enhanced SOD, GSH-Px, and CAT activities and HO-1 protein levels and decreased MDA content (P<0.05) were detected in the brain tissue of the Res-treated mice. The cytoplasmic Nrf2 content in the Res-treated mice was also decreased while the nuclear Nrf2 content and the nuclear translation rate of Nrf2 were increased (P<0.05). Res could decrease the expression of ERβ in the brain tissue at the mRNA and protein levels and the expression of Aβ in the brain tissue at the protein level. Res could also increase the mRNA and protein expression of ERα and ChAT and the protein expression of estradiol in the brain tissue. Conclusion. Res can increase the antioxidant capacity of AD models through the Nrf2/HO-1 signaling pathway. In addition, Res can enhance estrogen levels in an AD model. These findings provide a new idea for the treatment of AD.


Sign in / Sign up

Export Citation Format

Share Document