scholarly journals GP96 and SMP30 Protein Priming of Dendritic Cell Vaccination Induces a More Potent CTL Response against Hepatoma

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Rongshi Huang ◽  
Jian Pan ◽  
Yaoyao Zhang ◽  
Qiuhong Qin ◽  
Naixia Chao ◽  
...  

Heat-shock protein (HSP) GP96 is a well-known adjuvant in immunotherapy. It belongs to the HSP90 family. Our previous study demonstrated that DC pulsed with recombinant senescence marker protein 30 (SMP30) could induce cytotoxic T lymphocytes (CTLs) against liver cancer cells in vitro. In this study, SMP30 and GP96 were subcloned into lentiviruses and transfected into DCs from healthy donors. We included six groups: the GP96-SMP30 group, GP96 group, SMP30 group, DC group, empty vector control group, and hepatoma extracted protein group. We used ELISA to detect cytokines and flow cytometry to assess CD80 and CD86 on DCs and the effect of CTLs. Our vector design was considered successful and further studied. In the SMP30 group, DC expresses more CCR7 and CD86 than the control group; in the SMP30+GP96 group, DC express more CCR7, CD86, and CD80 than the control group. Transfected DCs secreted more TNF-α and interferon-β and induced more CTLs than control DCs. SMP30 + GP96 effectively stimulated the proliferation of T cells compared with control treatment ( P  < 0.01). We detected the cytokines TNF-α, TNF-β, IL-12, and IFN (α, β, and γ) via ELISA (Figure 5) and verified the killing effect via FCM. Four E : T ratios (0 : 1, 10 : 1, 20 : 1, and 40 : 1) were tested. The higher the ratio was, the better the effects were. We successfully constructed a liver cancer model and tested the CTL effect in each group. The GP96 + SMP30 group showed a better effect than the other groups. GP96 and SMP30 can stimulate DCs together and produce more potent antitumor effects. Our research may provide a new efficient way to improve the therapeutic effect of DC vaccines in liver cancer.

Vascular ◽  
2019 ◽  
Vol 28 (3) ◽  
pp. 314-320
Author(s):  
Weiping Ci ◽  
Tian Wang ◽  
Taotao Li ◽  
Jin Wan

Objectives The effect and underlying mechanism of T-614 (iguratimod) on Takayasu’s arteritis (TA) are unknown. Here, we report the effects of T-614 on cell proliferation and interleukin-8 (IL-8) production in human aortic adventitial fibroblasts (HAAFs) in vitro and explore its initial benefit in terms of vascular wall inflammation and remodeling for patients with TA. Methods HAAFs were cultured with 0, 5, 50, 100, or 250 μg/ml T-614 in the absence or presence of tumor necrosis factor-α (TNF-α) in vitro. Cell viability was determined by a modified MTT assay. Supernatant IL-8 levels were measured by enzyme-linked immunosorbent assays. Results In the presence of TNF-α, compared to that in the control group, cell viability of HAAFs significantly decreased in the 50, 100, and 250 μg/ml T-614 treatment groups (OD value: P <  0.01, P <  0.001, P <  0.001, respectively; survival fraction (SF): P <  0.05, P <  0.001, P <  0.001, respectively). However, there was no significant difference in cell viability between TNF-α-stimulated and unstimulated groups at the same concentration of T-614. In the absence or presence of TNF-α, T-614 suppressed HAAF cell viability dose-dependently (OD value: r = −0.915, P =  0.000; r = −0.926, P =  0.000, respectively; SF: r = −0.897, P =  0.000; r = −0.885, P =  0.000, respectively). Compared to that in the control group, in the absence of TNF-α, IL-8 levels in the 5 and 100 μg/ml T-614-treated groups were significantly higher ( P <  0.05); in the presence of TNF-α, IL-8 levels in the 5, 50, and 100 μg/ml T-614-treated groups were significantly higher ( P <  0.001, P <  0.001, P <  0.01, respectively). Further, there was a negative correlation between supernatant IL-8 levels and T-614 concentration in groups stimulated with TNF-α ( r = −0.670, P =  0.000), but there was no significant correlation between these parameters in groups that were not stimulated with TNF-α. Conclusions In the absence or presence of TNF-α, T-614 can inhibit HAAF proliferation and promote IL-8 production in vitro; therefore, it could be used to prevent adventitial thickening of the aorta and improve vascular remodeling in inflammatory environments in vitro and might provide a new immunotherapeutic intervention for TA.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 478 ◽  
Author(s):  
Rasha Al-Rikabi ◽  
Hanady Al-Shmgani ◽  
Yaser Hassan Dewir ◽  
Salah El-Hendawy

(1) Background: Plant flavonoids are efficient in preventing and treating various diseases. This study aimed to evaluate the ability of hesperidin, a flavonoid found in citrus fruits, in inhibiting lipopolysaccharide (LPS) induced inflammation, which induced lethal toxicity in vivo, and to evaluate its importance as an antitumor agent in breast cancer. The in vivo experiments revealed the protective effects of hesperidin against the negative LPS effects on the liver and spleen of male mice. (2) Methods: In the liver, the antioxidant activity was measured by estimating the concentration of glutathione (GSH) and catalase (CAT), whereas in spleen, the concentration of cytokines including IL-33 and TNF-α was measured. The in vitro experiments including MTT assay, clonogenity test, and sulforhodamine 101 stain with DAPI (4′, 6-diamidino-2-phenylindole) were used to assess the morphological apoptosis in breast cancer cells. (3) Results: The results of this study revealed a significant increase in the IL-33 and TNF-α cytokine levels in LPS challenged mice along with a considerable elevation in glutathione (GSH); moreover, the catalase (CAT) level was higher compared to that of the control group. Cytotoxicity of the MCF-7 cell line revealed significant differences among the groups treated with different concentrations when compared to the control groups, in a concentration-dependent manner. Hesperidin significantly inhibited the colony formation of MCF7 cells when compared to that of control. Clear changes were observed in the cell shape, including cell shrinkage and chromatin condensation, which were associated with a later apoptotic stage. (4) Conclusion: The results indicate that hesperidin might be a potential candidate in preventing diseases.


2016 ◽  
Vol 36 (5) ◽  
Author(s):  
Jiang-Ying Ru ◽  
Hai-Dong Xu ◽  
Dai Shi ◽  
Jun-Bo Pan ◽  
Xiao-Jin Pan ◽  
...  

Ulinastatin, a urinary trypsin inhibitor (UTI), is widely used to clinically treat lipopolysaccharide (LPS)-related inflammatory disorders recently. Adherent pathogen-associated molecular patterns (PAMPs), of which LPS is the best-studied and classical endotoxin produced by Gram-negative bacteria, act to increase the biological activity of osteopedic wear particles such as polymethyl-methacrylate (PMMA) and titanium particles in cell culture and animal models of implant loosening. The present study was designed to explore the inhibitory effect of UTI on osteoclastogenesis and inflammatory osteolysis in LPS/PMMA-mediated Raw264.7 cells and murine osteolysis models, and investigate the potential mechanism. The in vitro study was divided into the control group, LPS-induced group, PMMA-stimulated group and UTI-pretreated group. UTI (500 or 5000 units/ml) pretreatment was followed by PMMA (0.5 mg/ml) with adherent LPS. The levels of inflammatory mediators including tumour necrosis factor-α (TNF-α), matrixmetallo-proteinases-9 (MMP-9) and interleukin-6 (IL-6), receptor activation of nuclear factor NF-κB (RANK), and cathepsin K were examined and the amounts of phosphorylated I-κB, MEK, JNK and p38 were measured. In vivo study, murine osteolysis models were divided into the control group, PMMA-induced group and UTI-treated group. UTI (500 or 5000 units/kg per day) was injected intraperitoneally followed by PMMA suspension with adherent LPS (2×108 particles/25 μl) in the UTI-treated group. The thickness of interfacial membrane and the number of infiltrated inflammatory cells around the implants were assessed, and bone mineral density (BMD), trabecular number (Tb.N.), trabecular thickness (Tb.Th.), trabecular separation (Tb.Sp.), relative bone volume over total volume (BV/TV) of distal femur around the implants were calculated. Our results showed that UTI pretreatment suppressed the secretion of proinflammatory cytokines including MMP-9, IL-6, TNF-α, RANK and cathepsin K through down-regulating the activity of nuclear factor kappa B (NF-κB) and MAPKs partly in LPS/PMMA-mediated Raw264.7 cells. Finally, UTI treatment decreased the inflammatory osteolysis reaction in PMMA-induced murine osteolysis models. In conclusion, these results confirm the anti-inflammatory potential of UTI in the prevention of particle disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yujiao Zhou ◽  
Feifei Liu ◽  
Chengmin Li ◽  
Guo Shi ◽  
Xiaolei Xu ◽  
...  

Dendritic cells (DCs) harboring tumor-associated antigen are supposed to be a potential immunotherapy for hepatocellular carcinoma (HCC). Aspartate-β-hydroxylase (AAH), an overexpressed tumor-associated cell surface protein, is considered as a promising biomarker and therapeutic target for HCC. In this study, we constructed adenovirus vector encoding AAH gene by gateway recombinant cloning technology and preliminarily explored the antitumor effects of DC vaccines harboring AAH. Firstly, the total AAH mRNA was extracted from human HCC tissues; the cDNA was amplified by RT-PCR, verified, and sequenced after TA cloning. Gateway technology was used and the obtained 18T-AAH was used as a substrate, to yield the final expression vector Ad-AAH-IRES2-EGFP. Secondly, bone marrow-derived DCs were infected by Ad-AAH-IRES2-EGFP to yield AAH-DC vaccines. Matured DCs were demonstrated by increased expression of CD11c, CD80, and MHC-II costimulatory molecules. A dramatically cell-killing effect of T lymphocytes coculturing with AAH-DCs on HepG2 HCC cell line was demonstrated by CCK-8 and FCM assays in vitro. More importantly, in an animal experiment, the lysis effect of cytotoxic T lymphocytes (CTLs) on HepG2 cells in the AAH-DC group was stronger than that in the control groups. In conclusion, the gateway recombinant cloning technology is a powerful method of constructing adenovirus vector, and the product Ad-AAH-IRES2-EGFP may present as a potential candidate for DC-based immunotherapy of HCC.


2003 ◽  
Vol 284 (2) ◽  
pp. R550-R557 ◽  
Author(s):  
Roy D. Goldfarb ◽  
Thomas S. Parker ◽  
Daniel M. Levine ◽  
Dana Glock ◽  
Imran Akhter ◽  
...  

Lipoprotein phospholipid (PL) plays a major role in neutralization of endotoxin. This study tested the hypothesis that prophylactic administration of a PL-enriched emulsion (PRE), which augments PL content of serum lipoproteins and neutralizes endotoxin in vitro, would preserve cardiovascular function and improve survival in porcine septic peritonitis. A control group was compared with low-, mid-, and high-dose treatment groups that received PRE by primed continuous infusion for 48 h. A fibrin clot containing live Escherichia coli 0111.B4 was implanted intraperitoneally 30 min after the priming dose. Survival increased in a dose-dependent manner and was correlated with serum PL. Infused PL was associated with high-density lipoprotein in the low-dose group and all serum lipoproteins at higher doses. Treatment significantly lowered serum endotoxin and tumor necrosis factor (TNF)-α, preserved cardiac output and ejection fraction, and attenuated increases in systemic and pulmonary vascular resistances. This study demonstrated that augmentation of lipoprotein PL via administration of PRE improved survival and offered a novel therapeutic approach to sepsis.


2017 ◽  
Vol 44 (6) ◽  
pp. 2395-2406 ◽  
Author(s):  
Li-yun Pan ◽  
Ya-feng Chen ◽  
Hong-chang Li ◽  
Li-ming Bi ◽  
Wen-jie Sun ◽  
...  

Background/Aims: Dachengqi decoction (DCQD) is a well-known traditional Chinese herbal drug with strong anti-inflammatory effects. Angiopoietin-1 (Ang-1) plays a vital role in maintaining the stability and integrity of the vascular wall and prevents vascular leakage due to inflammatory mediators. Our previous work found that DCQD protects against pancreatic injury in rats with severe acute pancreatitis (SAP). This study aims to investigate the effects of DCQD on intestinal endothelial damage in both damaged human umbilical vein endothelial cells (HUVECs) and SAP rats. Methods: HUVECs were randomly divided into four groups: control group, TNF-α group, TNF-α plus Ang-1 group (Ang-1 group), and TNF-α plus DCQD group (DCQD group). Cells were incubated for 6 h, 12 h, and 24 h, before collection. The treatment concentration of DCQD was decided based on a Cell Counting Kit-8 (CCK-8) assay. The monolayer permeability of the HUVECs was assessed by measuring the transendothelial electrical resistance (TEER). Apoptosis was analyzed by flow cytometry. mRNA and protein expression of aquaporin 1 (AQP-1), matrix metalloproteinase 9 (MMP9), and junctional adhesion molecule-C (JAM-C) was evaluated by RT-PCR, immunocytofluorescence, and western blot. Forty male Sprague-Dawley rats were randomized into a control group, SAP group, SAP plus Ang-1 group (Ang-1 group), and SAP plus DCQD group (DCQD group). SAP was induced by intraperitoneal injection of cerulein and lipopolysaccharide (LPS), while the control group received 0.9% saline solution. Evans blue was injected through the penile vein and the rats were then sacrificed 12 h after modeling. Levels of serum amylase, TNF-α, IL-1β, IL-2, and IL-6 were determined by using ELISA. Intestinal tissue was analysed by histology, and capillary permeability in the tissues was evaluated by Evans blue extravasation assay. Protein and mRNA expression of AQP-1, MMP9, and JAM-C were assessed by immunohistofluorescence, western blot, and RT-PCR. Results: DCQD reduced the permeability of HUVEC induced by TNF-α in vitro. Furthermore, DCQD altered the mRNA and protein levels of JAM-C, MMP9, and AQP-1 in HUVECs after TNF-α induction. SAP intestinal injury induced by cerulein combined with lipopolysaccharides was concomitant with increased expression of JAM-C and MMP9, and reduced expression of AQP-1 in intestinal tissue. Pretreatment with DCQD attenuated SAP intestinal injury and lowered the levels of serum amylase, TNF–α, IL-1β, IL-2, and IL-6 effectively. Our study demonstrated that DCQD decreased the expression of JAM-C and MMP9 and increased the expression of AQP-1 both in vitro and in vivo. Conclusion: DCQD can reduce capillary endothelial damage in acute pancreatitis-associated intestinal injury and the mechanism may be associated with the regulation of endothelial barrier function-associated proteins AQP-1, MMP9, and JAM-C.


2021 ◽  
Vol 20 (11) ◽  
pp. 2261-2266
Author(s):  
Yanbin Hou ◽  
Zhongze Lou ◽  
Yunxin Ji ◽  
Liemin Ruan ◽  
He Gao

Purpose: To explore the effects of octreotide (OCT) on oxidative stress, inflammation and apoptosis in hypoxia/reoxygenation (H/R)-induced cerebral infarction.Methods: The in vitro model of cerebral infarction was established by treating N2A cells with hypoxia for 4 h and reoxygenation for 24 h. The viability of N2A cells was determined by CCK-8 assay. The cells were divided into 3 groups: control group, H/R group, and H/R+OCT group. The cells in H/R+OCT group were pretreated with OCT (60 ng/mL) before H/R treatment. The oxidative stress of N2A cells were assessed by determining the levels of superoxide dismutase (SOD), glutathione peroxidase (GSHPx), catalase (CAT), reactive oxygen species (ROS) and malondialdehyde (MDA). Inflammation of N2A cells was evaluated by evaluating the levels of TNF-α, IL-1β, IL-6, and IL-8, while the apoptosis of N2A cells was assessed by flow cytometry. Western blot analysis was used to determine the expression of Bcl-2, Bax, TLR4, MyD88, and NF-κB.Results: Octreotide treatment significantly reduced the level of oxidative stress. The inflammation of N2A cells caused by hypoxia/reoxygenation was inhibited by treatment with octreotide. Apoptosis of N2A cells was also inhibited by octreotide treatment. Hypoxia/reoxygenation activated TLR4/MyD88/NF-κB signaling pathway, while octreotide inhibits the activation of this pathway.Conclusion: The results reveal that octreotide inhibits hypoxia/reoxygenation-induced oxidative stress,as well as the inflammation, and apoptosis of N2A cells by inhibiting TLR4/MyD88/NF-κB signaling pathway. Thus, these findings may provide new insights into the treatment of cerebral infarction.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Gaochao Zhang ◽  
Liyan Yang ◽  
Yu Han ◽  
Haiyue Niu ◽  
Li Yan ◽  
...  

Background. This study is aimed at assessing the subsets of bone marrow macrophages in patients with myelodysplastic syndrome (MDS) and exploring the role of macrophages in the pathogenesis of MDS. Methods. Thirty-eight newly diagnosed MDS patients were enrolled in the Department of Hematology of General Hospital of Tianjin Medical University from June 2015 to June 2016. Bone marrow monocytes and macrophage subsets (M1/M2) were detected in patients with MDS and normal controls by flow cytometry. M1 macrophages were cultured in vitro, and the expression of IL-1β and TNF-α mRNA was measured using real-time polymerase chain reaction. Results. Compared with the normal control group, the proportion of bone marrow monocytes was higher ( 2.11 ± 0.93 % vs. 3.66 ± 3.38 % ), and the mean fluorescence intensity of surface molecule CD14 was lower in the higher-risk (HR) MDS group ( 639.05 ± 359.78 vs. 458.26 ± 306.72 , p < 0.05 ). The ratio of M2 macrophages to monocytes was higher in patients with HR-MDS ( 1.82 ± 2.47 % vs. 3.93 ± 3.81 % , p < 0.05 ). The ratio of M1 to M2 macrophages was lower in the HR-MDS group ( 3.50 ± 3.22 vs. 1.80 ± 0.88 , p < 0.05 ). The expression of IL-1β and TNF-α mRNA in M1 macrophages was significantly lower in the MDS group ( p < 0.05 ). Conclusions. Patients with MDS had abnormal macrophage polarization, which may be involved in the alteration of bone marrow microenvironments.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4384 ◽  
Author(s):  
Nannan Li ◽  
Wenxiao Men ◽  
Yibo Zheng ◽  
Hechen Wang ◽  
Xiansheng Meng

This study aims to investigate the anticancer effect of Oroxin B (OB) both in vitro and in vivo, and the molecular mechanism involved in microRNA-221 and the PI3K/Akt/PTEN pathway through modulation of apoptosis in Hepatocellular carcinoma (HCC). DEN-induced rats and HepG2 cells based on the microfluidic chip were employed, while the mRNA and protein expression of microRNA-221, PI3K, p-Akt and PTEN were evaluated by RT-PCR and Western blot analysis. Based on Microfluidic Chip and DENinduced rat model, OB effectively exerts anti-liver cancer effect both in vitro and in vivo, and the expression of miR-221 in OB treated groups was significantly lower than that in the control group (** p < 0.01). The RT-PCR and Western blot results suggested the PI3K mRNA and protein in OB treated groups were both lower than those in control group and indicated the overexpression of PTEN. Therefore, OB effectively exerts anticancer effects by positively regulating the PTEN gene and then inactivating the PI3K/Akt signaling pathway through down-regulating the expression of the microRNA-221, thereby inducing apoptosis of liver cancer cells. This study offers a theoretical evidence for further development and clinical guidance of OB as an anti-tumor agent.


2019 ◽  
Vol 17 (1) ◽  
pp. 413-421 ◽  
Author(s):  
Han-Qing Liu ◽  
Ya-Wen An ◽  
A-Zhen Hu ◽  
Ming-Hua Li ◽  
Guang-Hui Cui

AbstractIn this study we investigated the antineoplastic effects of Berberine (BBR)-mediated photodynamic therapy (PDT) on HeLa cells and its related mechanisms. The CCK-8 assay and flow cytometry were used to evaluate the proliferation and apoptosis of cells respectively. In addition, changes in protein expression levels were assessed using western blot. BBR at dose of 10 mg/kg was injected intraperitoneally to mice with tumors and PDT treatments were performed 24 hours later. In vivo imaging systems were used to evaluate the fluorescence of BBR. In vitro, PDT significantly enhanced the effects of BBR on inducing cell apoptosis and inhibiting proliferation. The in vivo results showed that the fluorescence intensity in the PDT group was decreased compared with that in the BBR group. Tumor weights and tumor size in the PDT group were less than those in the control group; however, when BBR was applied without PDT, no significant differences were observed between the BBR and control group. The results of western blot showed that PDT enhanced the inhibitory effects of BBR on the mammalian target of rapamycin (mTOR) signaling pathway, that may partly explain the potential underlying mechanisms.


Sign in / Sign up

Export Citation Format

Share Document