scholarly journals Multiple Tumor Induction after Treatment of Temporal Arteritis with Prednisone

2017 ◽  
Vol 10 (3) ◽  
pp. 1076-1084 ◽  
Author(s):  
Frank F. Piraino

A 74-year-old female was diagnosed with the autoimmune inflammatory disease temporal arteritis and treated with high and low doses of prednisone over a period of 6 years. During that time, she developed cancers of the lung and colon as well as a soft tumor mass on lumbar vertebrate L3. She also experienced a series of debilitating and disabling symptoms while on prednisone treatment. A temporal analysis of the association of prednisone therapy and immune markers to the successive appearance of the malignant tumors strongly suggests that in the absence of a functioning natural immune and surveillance system by treatment with the immune knockout drug prednisone, spontaneous, multiple independent mutations occurred in several sites in the organ systems of this patient. Over a period of time, these developed into malignant cancers, including a lung nodule which became cancerous 256 days later, as well as the cancers of the colon and a soft tumor mass on lumbar vertebrate L3.

1989 ◽  
Vol 28 (06) ◽  
pp. 247-254
Author(s):  
E. Aulbert

The cellular uptake and lysosomal accumulation of 67Ga-labelled transferrin within tumors of different malignancy were examined using tissue fractionation and immunological techniques. As tumor models the slowly growing Morris hepatoma 5123C, the moderately growing Novikoff hepatoma and the fast and aggressive Yoshida hepatoma AH 130 were investigated. Isolation of subcellular fractions of tumor homogenates was performed by differential centrifugation and density-gradient centrifugation. The intracellular 67Gatransferrin was found to be highly concentrated within the purified lysosomes. The transferrin within the lysosomal fraction was identified by radial immunodiffusion technique using monospecific antiserum. The accumulation of 67Gatransferrin by the tumors resulted in a faster disappearance of 67Ga-transferrin from the blood. This loss of circulating 67Ga-transferrin correlated with the proliferation activity and the spread of the tumors. Since transferrin is indispensible for the utilization of iron by the heme-synthesizing red cell precursors, transferrin concentration in the blood is the limiting factor for the utilization of iron in hemoglobin synthesis. Thus, in a further series of experiments we investigated the development of anemia in tumor-bearing rats. With increasing tumor mass a progressive fall of hemoglobin concentration was found. The anemia was more severe in the faster growing Novikoff hepatoma than in the slowly growing Morris hepatoma. The most significant reduction of hemoglobin concentration was found in the very fast growing Yoshida hepatoma. After total tumor resection hemoglobin concentration and red blood cell count normalized completely within 6-8 weeks. We conclude from these data that the uptake of transferrin by the tumor cells results in a faster disappearance of transferrin from the blood. This loss of circulating transferrin correlates with tumor mass and proliferation activity and is one of the factors responsible for the anemia seen in patients with malignant tumors.


1989 ◽  
Vol 28 (05) ◽  
pp. 193-200 ◽  
Author(s):  
E. Aulbert

Cellular uptake of 67Ga-labelled transferrin by the tumor tissue was studied in rats with tumors of different malignancy and different tumor mass using the slowly growing Morris hepatoma 5123C, the moderately growing Novikoff hepatoma and the very fast and aggressive Yoshida hepatoma AH130. The cellular accumulation of 67Ga-transferrin was found to correlate with the proliferation activity of the tumor. The 67Ga-transferrin concentration in the very fast growing Yoshida hepatoma was 4.8 times higher than the concentration in the slowly growing Morris hepatoma. The uptake of 67Ga-transferrin by the tumors resulted in a faster disappearance of circulating 67Ga-transferrin from the blood. The rate of disappearance correlated with the proliferation activity and the spread of the tumors. Using tumors of identical size the elimination of 67Ga-transferrin from the blood was much faster in the rats with Yoshida hepatoma than in those with the slowly growing Morris hepatoma. On the other hand, using tumors of different tumor size it could be demonstrated that the rate of disappearance of 67Ga-transferrin from the blood correlated directly with tumor mass. It is concluded that cellular incorporation of transferrin within the tumor cells results in a loss of circulating transferrin, which correlates with tumor mass and proliferation of tumor. This mechanism is supposed to be the cause for the hypotransferrinemia seen in patients with malignant tumors.


Author(s):  
Amrita Naik ◽  
Damodar Reddy Edla

Lung cancer is the most common cancer throughout the world and identification of malignant tumors at an early stage is needed for diagnosis and treatment of patient thus avoiding the progression to a later stage. In recent times, deep learning architectures such as CNN have shown promising results in effectively identifying malignant tumors in CT scans. In this paper, we combine the CNN features with texture features such as Haralick and Gray level run length matrix features to gather benefits of high level and spatial features extracted from the lung nodules to improve the accuracy of classification. These features are further classified using SVM classifier instead of softmax classifier in order to reduce the overfitting problem. Our model was validated on LUNA dataset and achieved an accuracy of 93.53%, sensitivity of 86.62%, the specificity of 96.55%, and positive predictive value of 94.02%.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Wenfa Jiang ◽  
Ganhua Zeng ◽  
Shuo Wang ◽  
Xiaofeng Wu ◽  
Chenyang Xu

Lung cancer is one of the malignant tumors with the highest fatality rate and nearest to our lives. It poses a great threat to human health and it mainly occurs in smokers. In our country, with the acceleration of industrialization, environmental pollution, and population aging, the cancer burden of lung cancer is increasing day by day. In the diagnosis of lung cancer, Computed Tomography (CT) images are a fairly common visualization tool. CT images visualize all tissues based on the absorption of X-rays. The diseased parts of the lung are collectively referred to as pulmonary nodules, the shape of nodules is different, and the risk of cancer will vary with the shape of nodules. Computer-aided diagnosis (CAD) is a very suitable method to solve this problem because the computer vision model can quickly scan every part of the CT image of the same quality for analysis and will not be affected by fatigue and emotion. The latest advances in deep learning enable computer vision models to help doctors diagnose various diseases, and in some cases, models have shown greater competitiveness than doctors. Based on the opportunity of technological development, the application of computer vision in medical imaging diagnosis of diseases has important research significance and value. In this paper, we have used a deep learning-based model on CT images of lung cancer and verified its effectiveness in the timely and accurate prediction of lungs disease. The proposed model has three parts: (i) detection of lung nodules, (ii) False Positive Reduction of the detected nodules to filter out “false nodules,” and (iii) classification of benign and malignant lung nodules. Furthermore, different network structures and loss functions were designed and realized at different stages. Additionally, to fine-tune the proposed deep learning-based mode and improve its accuracy in the detection Lung Nodule Detection, Noudule-Net, which is a detection network structure that combines U-Net and RPN, is proposed. Experimental observations have verified that the proposed scheme has exceptionally improved the expected accuracy and precision ratio of the underlined disease.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiao-Long Li ◽  
Ya-Ming Ji ◽  
Rui Song ◽  
Xiao-Ning Li ◽  
Lan-Shuan Guo

Gastric cancer (GC) is one of the most aggressive malignant tumors with low early diagnosis and high metastasis. Despite progress in treatment, to combat this disease, a better understanding of the underlying mechanisms and novel therapeutic targets is needed. KIF23, which belongs to the KIF family, plays a vital role in various cell processes, such as cytoplasm separation and axon elongation. Nowadays, KIF23 has been found to be highly expressed in multiple tumor tissues and cells, suggesting a potential link between KIF23 and tumorigenesis. Herein, we reported that KIF23 expression was correlated with poor prognosis of gastric cancer and found an association between KIF23 and pTNM stage. An in vitro assay proved that the proliferation of gastric cancer cells was significantly inhibited, which is caused by KIF23 depletion. Additionally, knockdown of KIF23 resulted in a marked inhibition of cell proliferation of gastric cancer in mice, with significant downregulation of Ki67 and PCNA expression. In conclusion, these data indicate that KIF23 is a potential therapeutic target for gastric cancer treatment.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Constanze L. Kemmerer ◽  
Jens Schittenhelm ◽  
Evelyn Dubois ◽  
Laura Neumann ◽  
Lisa M. Häsler ◽  
...  

Abstract Background Diffuse gliomas are the most common malignant tumors of the central nervous system with poor treatment efficacy. Infiltration of immune cells into tumors during immunosurveillance is observed in multiple tumor entities and often associated with a favorable outcome. The aim of this study was to evaluate the infiltration of immune cells in gliomas and their association with cerebrospinal fluid (CSF) cytokine concentrations. Methods We applied immunohistochemistry in tumor tissue sections of 18 high-grade glioma (HGG) patients (4 anaplastic astrocytoma, IDH-wildtype WHO-III; 14 glioblastomas (GBM), IDH-wildtype WHO-IV) in order to assess and quantify leucocytes (CD45) and macrophages (CD68, CD163) within the tumor core, infiltration zone and perivascular spaces. In addition, we quantified the concentrations of 30 cytokines in the same patients’ CSF and in 14 non-inflammatory controls. Results We observed a significantly higher percentage of CD68+ macrophages (21–27%) in all examined tumor areas when compared to CD45+ leucocytes (ca. 3–7%); CD163+ cell infiltration was between 5 and 15%. Compared to the tumor core, significantly more macrophages and leucocytes were detectable within the perivascular area. The brain parenchyma showing a lower tumor cell density seems to be less infiltrated by macrophages. Interleukin (IL)-7 was significantly downregulated in CSF of GBM patients compared to controls. Additionally, CD68+ macrophage infiltrates showed significant correlations with the expression of eotaxin, interferon-γ, IL-1β, IL-2, IL-10, IL-13, IL-16 and vascular endothelial growth factor. Conclusions Our findings suggest that the infiltration of lymphocytes is generally low in HGG, and does not correlate with cytokine concentrations in the CSF. In contrast, macrophage infiltrates in HGG are associated with CSF cytokine changes that possibly shape the tumor microenvironment. Although results point towards an escape from immunosurveillance or even exploitation of immune cells by HGG, further studies are necessary to decipher the exact role of the immune system in these tumors.


Author(s):  
Hongxu Li ◽  
Jie Gao ◽  
Shuijun Zhang

The cell adhesion molecule CADM1, which participates in cell adhesion and signal transduction, has a regulatory effect on the development of tumors. CADM1 is often involved in malignant tumors of multiple organ systems, such as the respiratory and digestive systems. Upregulated CADM1 promotes tumor cell apoptosis and inhibits malignant proliferation. Along with cell cycle-related proteins, it participates in regulating signaling pathways, such as EMT, STAT3, and AKT, and plays an important role in inhibiting invasion and migration. Considering clinical characteristics, low CADM1 expression is associated with aggressive tumors and poor prognosis. In addition, some long non-coding RNAs (lncRNAs) or miRNAs directly or indirectly act on CADM1 to regulate tumor growth and motility. Interestingly, CADM1 function differs in adult T-cell leukemia/lymphoma (ATLL), and NF-κB is thought to be involved in this process. Taken together, CADM1 could be a potential biomarker for early diagnosis and a target for cancer treatment in future clinical practices.


2017 ◽  
Vol 77 (08) ◽  
pp. 861-869 ◽  
Author(s):  
Angrit Stachs ◽  
Steffi Hartmann ◽  
Bernd Gerber

AbstractBecause of the efficacy of systemic therapies, neoplasias which occur in pediatric and adolescent patients and in young adults have high cure rates. This means that fulfilling their wish to have children has become a more pressing concern, particularly among young women with malignant tumors. Premature ovarian failure is also a not insignificant problem as it has a lasting detrimental effect on quality of life. Every oncology patient who may potentially wish to have children should be informed about their options for preserving fertility prior to starting treatment. The rates of patient who received detailed briefing on this point remain low. This review presents the effects of different chemotherapeutic drugs on gonadal function together with an overview of currently valid recommendations on fertility preservation. Risk groups are defined and the specific approaches for malignancies of various organ systems are described. Cryopreservation of oocytes, fertilized embryos and ovarian tissue are fertility-preserving options for girls/young women. The data on the benefits of administering GnRH analogs for ovarian protection prior to starting chemotherapy are not clear. In postpubertal boys or male cancer patients, the standard approach is to cryopreserve sperm before starting therapy. The cryopreservation of testicular tissue is possible for prepubertal boys, however in-vitro sperm maturation is still in its experimental stages. This review also presents existing drug options for the preservation of ovarian function in oncology patients prior to chemotherapy, particularly for patients with (hormone-sensitive) breast cancer, and looks at the special issues of fertility-preserving surgery and radiation therapy in patients with gynecologic malignancies.


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
Alexander G. Goglia ◽  
Michael Makar ◽  
Craig Vanuitert ◽  
Vadim Finkelstein

Microscopic polyangiitis (MPA) is an idiopathic autoimmune disease characterized by systemic vasculitis. While the lungs and kidneys are the major organs affected by MPA, it is known to involve multiple organ systems throughout the body. Temporal artery involvement is a very rare finding in MPA. This report presents a patient whose initial presentation was consistent with giant cell arteritis but was ultimately found to have microscopic polyangiitis. It highlights the importance of considering alternative types of vasculitis in the differential diagnosis for patients with atypical temporal artery biopsy findings.


2016 ◽  
Vol 5 (4) ◽  
pp. 99-104
Author(s):  
Jin Zhang

AbstractHuman papillomavirus (HPV) is a DNA virus that infects the skin and mucous membranes of the human body. Approximately 80% of sexually active women are likely infected with HPV. Cervical cancer is one of the most common malignant tumors and is second in incidence only to breast cancer. Infection with high-risk HPV types is the main risk factor for cervical cancer, which is currently the only malignant tumor with a clearly defined etiology. HPV infection is also closely related to the incidence and development of other malignant tumors. In addition to cervical cancer, HPV can cause other urogenital tumors, as well as tumors in the digestive tract, lungs, eyes, skin, and other organ systems. This paper provides a review of the progress in HPV infection-related research and provides novel ideas for the study of tumor etiology and mechanisms.


Sign in / Sign up

Export Citation Format

Share Document