scholarly journals 1,25-Dihydroxyvitamin D3 Attenuates Angiotensin II-Induced Renal Injury by Inhibiting Mitochondrial Dysfunction and Autophagy

2018 ◽  
Vol 51 (4) ◽  
pp. 1751-1762 ◽  
Author(s):  
Qiqi Shen ◽  
Xiao Bi ◽  
Lilu Ling ◽  
Wei Ding

Background/Aims: A recent study has shown that 1,25-dihydroxyvitamin D3 (1,25-D3), the active form of vitamin D, can ameliorate renal dysfunction. In this study, we aimed to determine the role of 1,25-D3 in angiotensin (Ang II)-induced renal injury and investigate the underlying mechanisms involved. Methods: C57BL/6J mice were treated with Ang II and/or 1,25-D3 (or saline as the control) for 2 weeks. Renal injury was evaluated using transmission electron microscopy and periodic acid-Schiff reagent and Masson’s trichrome staining. The pro-fibrotic and pro-inflammatory factors were assessed using real-time PCR. The renal apoptotic pathway was evaluated with TUNEL staining and western blot. Mitochondrial dysfunction (MtD) was determined using real-time PCR and electron microscopy. The activation of autophagy was detected using western blot. Results: In the Ang II-infused mice, expanded mesangial regions, tubulointerstitial fibrosis, and foot process fusion were observed; the levels of the pro-fibrotic and pro-inflammatory cytokines and MtD were also increased when compared with the control group. However, we found that administration of 1,25-D3 significantly improved renal function and MtD and reduced the pro-fibrotic and pro-inflammatory cytokine levels. Furthermore, 1,25-D3 significantly inhibited Ang II-induced autophagy dysfunction (determined by inhibition of Beclin-1 activation and reduction of the LC3-II/LC3-I ratio). Conclusion: Our findings suggest that 1,25-D3 may attenuate Ang II-induced renal injury by improving MtD and modulating autophagy. 1,25-D3 may be a new therapeutic for the treatment of CKD.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei Bing Jing ◽  
Hongjuan Ji ◽  
Rui Jiang ◽  
Jinlong Wang

Abstract Background Osteoporosis is a widespread chronic disease characterized by low bone density. There is currently no gold standard treatment for osteoporosis. The aim of this study was to explore the role and mechanism of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. Methods MC3T3-E1 cells were divided into control and different dose of Astragaloside (10, 20, 40, 50, and 60 μg/ml). Then, ALP and ARS staining were performed to identify the effects of Astragaloside for early and late osteogenic capacity of MC3T3-E1 cells, respectively. Real-time PCR and western blot were performed to assess the ALP, OCN, and OSX expression. PI3K/Akt signaling pathway molecules were then assessed by Western blot. Finally, PI3K inhibitor, LY294002, was implemented to assess the mechanism of Astragaloside in promoting osteogenic differentiation of MC3T3-E1 cells. Results Astragaloside significantly increased the cell viability than the control group. Moreover, Astragaloside enhanced the ALP activity and calcium deposition than the control groups. Compared with the control group, Astragaloside increased the ALP, OCN, and OSX expression in a dose-response manner. Western blot assay further confirmed the real-time PCR results. Astragaloside could significantly increase the p-PI3K and p-Akt expression than the control group. LY294002 partially reversed the promotion effects of Astragaloside on osteogenic differentiation of MC3T3-E1 cells. LY294002 partially reversed the promotion effects of Astragaloside on ALP, OCN, and OSX of MC3T3-E1 cells. Conclusion The present study suggested that Astragaloside promoted osteogenic differentiation of MC3T3-E1 cells through regulating PI3K/Akt signaling pathway.


2021 ◽  
Author(s):  
Yaru Fan ◽  
Yingbin Yan ◽  
Han Liu ◽  
Rui Luo ◽  
Hao Liu ◽  
...  

Abstract Objectives: To study the effect of mechanical overload stimulation on proliferation, differentiation and mineralization of osteoblast and the underlying mechanisms.Methods: MC3T3-E1 cells were divided into overload group and control group. Four-point bending loading device was used to exert mechanical overload stimulation on MC3T3-E1 cells for a certain time. The proliferation of osteoblasts was detected by MTT colorimetric assay. Real-time PCR and Western Blot were used to detect the transcription and expression of osteoblast marker genes and proteins. The specific fluorescent dyes were used to label the actin filament and the nucleus, and the changes of cytoskeleton were observed under laser scanning confocal microscope. The mineralization of osteoblasts was evaluated by the number of calcium nodules formed by alizarin red staining. Results: Compared with the control group, the mechanical overload group significantly inhibited the proliferation of osteoblasts (p <0.05). Real-time PCR and Western Blot showed that the expression of osteoblast differentiation marker gene and protein was inhibited by mechanical overload stimulation. Under laser confocal microscopy, the overload group cell shrinkage deformation was observed, also the microfilament arrangement disorder, the skeleton arrangement loose, the direction difference and the skeleton breakage, but the nucleus does not have obvious change. Alizarin red staining showed that mechanical overload inhibited the formation of calcium nodules in osteoblasts. The expression of β-catenin protein in Wnt signaling pathway was inhibited by overload mechanical stimulation under immunofluorescence microscopy.Conclusion: Mechanical overload stimulation reduces the expression of Runx 2 by affecting the classical Wnt/β-catenin signaling pathway, thus it was inhibited osteoblast proliferation, differentiation and mineralization.


2021 ◽  
Vol 65 (1) ◽  
Author(s):  
Xin-Wei Liu ◽  
Bin Ma ◽  
Ying Zi ◽  
Liang-Bi Xiang ◽  
Tian-Yu Han

As a flavonoid, rutin has been found to have a wide range of biological functions, such as resisting inflammation and oxidation, and preventing cerebral hemorrhage and hypertension. It has been found to play an important role in osteoporosis and other orthopedic diseases in recent years. MC3T3-E1 cells were randomly divided into a control group, a rutin-1 group (0.01 mmol/L), a rutin-2 group (0.05 mmol/L) and a rutin-3 group (0.1 mmol/L). Osteogenic differentiation of cells was induced by osteogenic induction fluid. The control group was treated with the maximum dose of drug solvent. 2~3 days later, the solvent was replaced with fresh osteogenic induction fluid containing rutin. After a certain period of routine culture, the cells were collected for subsequent experiments. The expression of Runx2 gene in cells in all groups was detected by Real-time PCR; the expression of Runx2 protein was detected by Western blot and immunocytochemistry; the activity of ALP was detected by reagent kit method; osteogenic differentiation was analyzed by alizarin red staining. The results of Real-time PCR showed that, compared with the control group, the treatment of cells with rutin can significantly increase the expression of Runx2 gene (p<0.05); the higher the concentration, the higher the expression of Runx2 gene, and significant differences were found among groups in which different concentrations were used (p<0.05); the results of Western blot and IHC showed that the expression trend of Runx2 protein in each group was consistent with PCR results. In drug treatment groups, the activity of ALP was significantly higher than that in the control group (p<0.05); there were significant differences among groups in which different concentrations were used (p<0.05). The results of alizarin red staining showed that calcified nodules were formed in all groups and that the area of calcified nodules formed in groups treated with rutin was greater than that in the control group; the greater the concentration, the larger the area. Rutin can promote osteoblastic differentiation; and the greater the concentration, the more effective it is.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Zhengjia Su ◽  
Fang Wu

Objective. Inflammatory responses play important roles in the pathogenesis of atherosclerosis. The purpose of this study was to investigate the relationship between microRNA-146b-3p (miR-146b-3p) and inflammatory factors in thrombosis. Method. THP-1 cells were cultured in vitro, Western blot was used to determine the protein levels of COX-2 and p38MAPK in the cells, and real-time PCR was used to detect the mRNA expression of miRNA-146b-3p and COX-2. A lentiviral expression vector of miRNA-146b-3p and its inhibitor were constructed to transfect THP-1 cells. COX-2 and p38MAPK expression in transfected cells was detected by Western blot and real-time PCR, respectively. Results. Ang II and TNF-α could elevate the expression of COX-2 in monocytes. The expression of COX-2 was upregulated by p38MAPK, which could be phosphorylated by Ang II, while there was an increasing tendency of p38MAPK phosphorylation after TNF-α stimulation. In addition, COX-2 expression and P38MAPK phosphorylation could be downregulated by miRNA-146b-3p and upregulated by the miRNA-146b-3p inhibitor. Ang II could increase miR-146b-3p expression, although there was no significant difference; however, the expression of miR-146b-3p was enhanced significantly by TNF-α. Conclusion. Our data implied that altered expression of miR-146b-3p was closely related to the progression of inflammation mediating the P38MAPK/COX-2 pathway. We suggest that the miR-146b-3p/p38MAPK/COX-2 pathway plays a key role in inflammation and arterial thrombosis.


2008 ◽  
Vol 190 (13) ◽  
pp. 4624-4631 ◽  
Author(s):  
Hideaki Mizusaki ◽  
Akiko Takaya ◽  
Tomoko Yamamoto ◽  
Shin-Ichi Aizawa

ABSTRACT Salmonella enterica serovar Typhimurium secretes virulence factors for invasion called Sip proteins or Sips into its hosts through a type III secretion system (T3SS). In the absence of a host, S. enterica induces Sip secretion in response to sucrose or simple salts, such as NaCl. We analyzed induction of host-independent Sip secretion by monitoring protein secretion by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), assembly of needle complexes by electron microscopy, and transcription of virulence regulatory genes by quantitative reverse transcriptase PCR (real-time PCR). SDS-PAGE showed that addition of sucrose or simple salts, such as NaCl, to the growth medium induced Sip secretion without altering flagellar protein secretion, which requires a distinct T3SS. Electron microscopy confirmed that the amount of secreted Sips increased as the number of assembled needle complexes increased. Real-time PCR revealed that added sucrose or NaCl enhanced transcription of hilA, hilC, and hilD, which encode known regulators of Salmonella virulence. However, epistasis analysis implicated HilD and HilA, but not HilC, in the direct pathway from the salt stimulus to the Sip secretion response. Further analyses showed that the BarA/SirA two-component signal transduction pathway, but not the two-component sensor kinase EnvZ, directly activated hilD and hilA transcription and thus Sip secretion in response to either sucrose or NaCl. Finally, real-time PCR showed that salt does not influence transcription of the BarA/SirA-dependent csrB and csrC genes. A model is proposed for the major pathway in which sucrose or salt signals to enhance virulence gene expression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Wang ◽  
Hongjuan Liao ◽  
Yueheng Wang ◽  
Jinlin Zhou ◽  
Feng Wang ◽  
...  

Abstract Background Cardiovascular diseases have become the leading cause of death worldwide, and cardiac hypertrophy is the core mechanism underlying cardiac defect and heart failure. However, the underlying mechanisms of cardiac hypertrophy are not fully understood. Here we investigated the roles of Kallikrein 11 (KLK11) in cardiac hypertrophy. Methods Human and mouse hypertrophic heart tissues were used to determine the expression of KLK11 with quantitative real-time PCR and western blot. Mouse cardiac hypertrophy was induced by transverse aortic constriction (TAC), and cardiomyocyte hypertrophy was induced by angiotensin II. Cardiac function was analyzed by echocardiography. The signaling pathway was analyzed by western blot. Protein synthesis was monitored by the incorporation of [3H]-leucine. Gene expression was analyzed by quantitative real-time PCR. Results The mRNA and protein levels of KLK11 were upregulated in human hypertrophic hearts. We also induced cardiac hypertrophy in mice and observed the upregulation of KLK11 in hypertrophic hearts. Our in vitro experiments demonstrated that KLK11 overexpression promoted whereas KLK11 knockdown repressed cardiomyocytes hypertrophy induced by angiotensin II, as evidenced by cardiomyocyte size and the expression of hypertrophy-related fetal genes. Besides, we knocked down KLK11 expression in mouse hearts with adeno-associated virus 9. Knockdown of KLK11 in mouse hearts inhibited TAC-induced decline in fraction shortening and ejection fraction, reduced the increase in heart weight, cardiomyocyte size, and expression of hypertrophic fetal genes. We also observed that KLK11 promoted protein synthesis, the key feature of cardiomyocyte hypertrophy, by regulating the pivotal machines S6K1 and 4EBP1. Mechanism study demonstrated that KLK11 promoted the activation of AKT-mTOR signaling to promote S6K1 and 4EBP1 pathway and protein synthesis. Repression of mTOR with rapamycin blocked the effects of KLK11 on S6K1 and 4EBP1 as well as protein synthesis. Besides, rapamycin treatment blocked the roles of KLK11 in the regulation of cardiomyocyte hypertrophy. Conclusions Our findings demonstrated that KLK11 promoted cardiomyocyte hypertrophy by activating AKT-mTOR signaling to promote protein synthesis.


2003 ◽  
Vol 284 (5) ◽  
pp. R1219-R1230 ◽  
Author(s):  
Baozhi Yuan ◽  
Mingyu Liang ◽  
Zhizhang Yang ◽  
Elizabeth Rute ◽  
Norman Taylor ◽  
...  

The present study was designed to determine whether nonhypertensive elevations of plasma ANG II would modify the expression of genes involved in renal injury that could influence oxidative stress and extracellular matrix formation in the renal medulla using microarray, Northern, and Western blot techniques. Sprague-Dawley rats were infused intravenously with either ANG II (5 ng · kg−1 · min−1) or vehicle for 7 days ( n = 6/group). Mean arterial pressure averaged 110 ± 0.6 mmHg during the control period and 113 ± 0.4 mmHg after ANG II. The mRNA of 1,751 genes (∼80% of all currently known rat genes) that was differentially expressed (ANG II vs. saline) in renal outer and inner medulla was determined. The results of 12 hybridizations indicated that in response to ANG II, 11 genes were upregulated and 25 were downregulated in the outer medulla, while 11 were upregulated and 13 were downregulated in the inner medulla. These differentially expressed genes, most of which were not known previously to be affected by ANG II in the renal medulla, were found to group into eight physiological pathways known to influence renal injury and kidney function. Particularly, expression of several genes would be expected to increase oxidative stress and interstitial fibrosis in the outer medulla. Western blot analyses confirmed increased expression of transforming growth factor-β1 and collagen type IV proteins in the outer medulla. Results demonstrate that nonhypertensive elevations of plasma ANG II can significantly alter the expression of a variety of genes in the renal outer medulla and suggested the vulnerability of the renal outer medulla to the injurious effect of ANG II.


2004 ◽  
Vol 50 (2) ◽  
pp. 306-312 ◽  
Author(s):  
Stefan S Biel ◽  
Andreas Nitsche ◽  
Andreas Kurth ◽  
Wolfgang Siegert ◽  
Muhsin Özel ◽  
...  

Abstract Background: We studied electron microscopy (EM) as an appropriate test system for the detection of polyomavirus in urine samples from bone marrow transplant patients. Methods: We evaluated direct EM, ultracentrifugation (UC) before EM, and solid-phase immuno-EM (SPIEM). The diagnostic accuracy of EM was studied by comparison with a real-time PCR assay on 531 clinical samples. Results: The detection rate of EM was increased by UC and SPIEM. On 531 clinical urine samples, the diagnostic sensitivity of EM was 47% (70 of 149) with a specificity of 100%. We observed a linear relationship between viral genome concentration and the proportion of urine samples positive by EM, with a 50% probability for a positive EM result for urine samples with a polyomavirus concentration of 106 genome-equivalents (GE)/mL; the probability of a positive EM result was 0% for urine samples with &lt;103 GE/mL and 100% for urine samples containing 109 GE/mL. Conclusions: UC/EM is rapid and highly specific for polyomavirus in urine. Unlike real-time PCR, EM has low sensitivity and cannot quantify the viral load.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yuzhu Di ◽  
Yanan Jiang ◽  
Xiuyun Shen ◽  
Jing Liu ◽  
Yang Gao ◽  
...  

Esophageal cancer (EC) is one of the commonest human cancers, which accompany high morbidity. MicroRNAs (miRNAs) play a pivotal role in various cancers, including EC. Our research aimed to reveal the function and mechanism of miR-135b-5p. Our research identified that miR-135b-5p was elevated in EC samples from TCGA database. Correspondingly real-time PCR assay also showed the miR-135b-5p is also higher expressed in Eca109, EC9706, KYSE150 cells than normal esophageal epithelial cells (Het-1A). CCK8, Edu, wound healing, Transwell assay, and western blot demonstrated miR-135b-5p inhibition suppresses proliferation, invasion, migration and promoted the apoptosis in Eca109 and EC9706 cells. Moreover, the miR-135b-5p inhibition also inhibited xenograft lump growth. We then predicted the complementary gene of miR-135b-5p using miRTarBase, TargetScan, and DIANA-microT. TXNIP was estimated as a complementary gene for miR-135b-5p. Luciferase report assay verified the direct binding site for miR-135b-5p and TXNIP. Real-time PCR and western blot assays showed that the inhibition of miR-135b-5p remarkably enhanced the levels of TXNIP in Eca109 and EC9706 cells. Furthermore, cisplatin (cis-diamminedichloroplatinum II, DDP) decreased miR-135b-5p expression and increased TXNIP expression. Enhanced expression of miR-135b-5p attenuated the inhibitory ability of cisplatin (cis-diamminedichloroplatinum II, DDP) in Eca109 cells, accompanied by TXNIP downregulation. In conclusion, the downregulation of miR-135b-5p suppresses the progression of EC through targeting TXNIP. MiR-135b-5p/TXNIP pathway contributes to the anti-tumor effect of DDP. These findings may provide new insight into the treatment of EC.


2021 ◽  
Vol 8 (4) ◽  
pp. 325-332
Author(s):  
Kate Deepali Rajesh ◽  
Puranam Vatsalaswamy ◽  
Manvikar Purshotam Rao

To study the relevance of sperm telomere length and infertility in men. : Our case-control study included twenty-five males in couple with sub-fertility/infertility (test group) and twenty five healthy males (control group) with proven paternity in the age group 25 to 35 years. The Absolute Sperm Telomere length (aSTL) was measured by real-time PCR. We investigated whether any significant difference in the aSTL value existed between the groups and analysed the relationship between aSTL and other sperm parameters.The mean (SE) aSTL recorded in the infertile cases was significantly shorter than for the control group being 140.60 (6.66) Kb/genome and 239.63 (12.32) Kb/genome respectively (p &#60;0.001) A weak correlation was eminent between aSTL kb/genome and the total sperm count mil/ml (rho= 0.04, p - 0.86), progressive sperm motility (rho= - 0.02, p=0.934) and sperm viability (rho= - 0.07 p=0.741) in the infertile group. The measurement of aSTL by real-time PCR is a simple and rapid method that offers further paramount information with respective to the quality of sperm. It is befitted for epidemiological studies, hence opening new perspectives in the evaluation of male infertility. Limitations - Our study was confined to men aged between 25 and 35 years. Further comparative studies are needed to explore the significance of STL and infertility in older males. Additional studies will help illumine the significance of aSTL as a prognostic biomarker in assisted reproduction.


Sign in / Sign up

Export Citation Format

Share Document