scholarly journals Dual output DC-DC quasi impedance source converter

Author(s):  
Muhammad Ado ◽  
Awang Jusoh ◽  
Tole Sutikno ◽  
Mohd Hanipah Muda ◽  
Zeeshan Ahmad Arfeen

A double output port DC-DC quasi impedance source converter (q-ZSC) is proposed. Each of the outputs has a different voltage gain. One of the outputs is capable of bidirectional (four-quadrant) operation by only varying the duty ratio. The second output has the gain of traditional two-switch buck-boost converter. Operation of the converter was verified by simulating its responses for different input voltages and duty ratios using MATLAB SIMULINK software. Its average steady-state output current and voltage values were determined and used to determine the ripples that existed. These ripples are less than 5% of the average steady-state values for all the input voltage and duty ratio ranges considered.

2021 ◽  
Vol 13 (19) ◽  
pp. 11059
Author(s):  
Shahrukh Khan ◽  
Arshad Mahmood ◽  
Mohammad Zaid ◽  
Mohd Tariq ◽  
Chang-Hua Lin ◽  
...  

High gain DC-DC converters are getting popular due to the increased use of renewable energy sources (RESs). Common ground between the input and output, low voltage stress across power switches and high voltage gain at lower duty ratios are desirable features required in any high gain DC-DC converter. DC-DC converters are widely used in DC microgrids to supply power to meet local demands. In this work, a high step-up DC-DC converter is proposed based on the voltage lift (VL) technique using a single power switch. The proposed converter has a voltage gain greater than a traditional boost converter (TBC) and Traditional quadratic boost converter (TQBC). The effect of inductor parasitic resistances on the voltage gain of the converter is discussed. The losses occurring in various components are calculated using PLECS software. To confirm the performance of the converter, a hardware prototype of 200 W is developed in the laboratory. The simulation and hardware results are presented to determine the performance of the converter in both open-loop and closed-loop conditions. In closed-loop operation, a PI controller is used to maintain a constant output voltage when the load or input voltage is changed.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3032 ◽  
Author(s):  
Hongchen Liu ◽  
Xi Su ◽  
Junxiong Wang

In this paper, two types of high step-up coupled inductor inverters based on qSBIs (quasi- switched boost inverters) are proposed. By applying the coupled inductor to the qSBIs, the voltage gain of the proposed inverter is regulated by turn ratio and duty ratio. Thus, a high voltage gain can be achieved without the circuits operating at the extreme duty cycle by choosing a suitable turn ratio of the coupled inductor. In addition, the proposed circuits have the characteristics of continuous input current and low voltage stress across the passive components. A boost unit can be added to the proposed inverters for further improvement of the voltage gain. In this paper, the working principle, steady state analysis, and the comparisons of the proposed inverter with other impedance-source inverters are described. A 200 W prototype was created and the experimental results confirm the correctness of the analysis in this paper.


Author(s):  
Mamidala Hemanth Reddy

The output voltage from the sustainable energy like photovoltaic (PV) arrays and fuel cells will be at less amount of level. This must be boost considerably for practical utilization or grid connection. A conventional boost converter will provides low voltage gain while Quadratic boost converter (QBC) provides high voltage gain. QBC is able to regulate the output voltage and the choice of second inductor can give its current as positive and whereas for boost increases in the voltage will not able to regulate the output voltage. It has low semiconductor device voltage stress and switch usage factor is high. Analysis and design modeling of Quadratic boost converter is proposed in this paper. A power with 50 W is developed with 18 V input voltage and yield 70 V output voltage and the outcomes are approved through recreation utilizing MATLAB/SIMULINK MODEL.


Author(s):  
Suwarno Suwarno ◽  
Tole Sutikno

<p>This paper presents the implementation of the buck-boost converter design which is a power electronics applications that can stabilize voltage, even though the input voltage changes. Regulator to stabilize the voltage using PWM pulse that triger pin 2 on XL6009. In this design of buck-boost converter is implemented using the XL6009, LM7815 and TIP2955. LM7815 as output voltage regulator at 15V with 1A output current, while TIP2955 is able to overcome output current up to 5A. When the LM7815 and TIP2955 are connected in parallel, the converter can increase the output current to 6A.. Testing is done using varied voltage sources that can be set. The results obtained from this design can be applied to PV (Photovoltaic) and WP (Wind Power), with changes in input voltage between 3-21V dc can produce output voltage 15V.</p>


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1312
Author(s):  
Lie Xia ◽  
Lianghui Xu ◽  
Qingbin Yang ◽  
Feng Yu ◽  
Shuangqing Zhang

In this paper, a model predictive control (MPC) scheme with an enhanced active voltage vector region (AV2R) was developed and implemented to achieve better steady-state performance and lower total harmonic distortion (THD) of the output current for a vehicle-to-grid (V2G) inverter. Firstly, the existing MPC methods conducted with single vector and two vectors during one sampling period were analyzed and the corresponding AV2Rs were elaborated. Secondly, the proposed strategy was investigated, aiming at expanding the AV2R and improving the steady-state performance accordingly. A formal mathematical methodology was studied in terms of duty ratio calculation. Lastly, the proposed method was carried out through experimentation. For comparison, the experimental results of the three mentioned methods were provided as well, proving the effectiveness of the proposed algorithm.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1049 ◽  
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Branislav Hanko ◽  
Michal Prazenica

In this article, design, analysis, and experimental testing of a dual interleaved boost converter with coupled inductor including demagnetizing winding are presented. Proposed topology uses the specific design of boost coils placed within the side parts of the EE core together with a demagnetizing coil located on the center part of the core. Paper describes principles of operational scenarios and characteristics. Through modification of turns ratio between boost coils and demagnetizing coil is possible to achieve high voltage gain. Consequently, the functional performance of this perspective topology is realized experimentally. For that purpose, the physical sample of converter is designed and tested in terms of efficiency considering the change of transferred power or the change of input voltage. Through modification of turns ratio between boost coils and demagnetizing coil is possible to achieve high voltage gain, therefore these dependencies are also evaluated considering also the change of the duty cycle. At the end of the paper basic operational properties are compared to standard boost topologies. It was discovered that even due to higher complexity of the proposed converter oppose to selected topologies, the operational performance is much better considering ripple of the electrical variables, efficiency, or the size of circuit components.


Author(s):  
Lakhdar Bentouati ◽  
Ali Cheknane ◽  
Boumediène Benyoucef ◽  
Oscar Barambones

The need to increase the voltage level produced by PV systems becomes an urgent task to be compatible with the requirements of the AC load, but we meet problems in the operation of the step-up converter at a high duty cycle which is not preferred due to the reduction in voltage gain, and also a higher number of turns ratio in the windings inductance coupled adds to the overall losses of the converter. This article proposes an improved DC-DC converter with a lower duty cycle by integrating three tapped-inductors in new topology, which combined quadratic boost converter and tapped-inductor boost converter. The proposed converter achieves a high voltage gain with a lower duty ratio (Gmax = 14.32) and a maximum efficiency of 98.68% is improved compared to the voltage gain and efficiency results of these converters in several recently published references. The analyses are done theoretically and supported with simulation results. A prototype of the proposed converter has been built to experimentally validate the obtained results.


2021 ◽  
Vol 11 (8) ◽  
pp. 3625
Author(s):  
Chien-Hsuan Chang ◽  
Yi-Fan Chen

To improve the efficiency of photovoltaic (PV) grid-tied systems and simplify the circuit structure, many pseudo DC-link inverters have been proposed by combining a sinusoidal pulse-width modulation (SPWM) controlled buck-boost converter and a low-frequency polarity unfolder. However, due to the non-ideal characteristics of power diodes, the voltage-gain of a buck-boost converter is limited. To meet the needs of grid-connected systems with low input voltage and 220 Vrms utility, this paper uses two two-switch buck-boost converters with coupled inductors to develop a transformer-less buck-boost grid-tied inverter with low leakage-current and high voltage-gain. The proposed inverter is charging on the primary side of the coupled inductor and discharging in series on the primary side and the secondary side so that the voltage-gain can be greatly increased. Furthermore, the utility line can be connected to the negative end of the PV array to suppress leakage current, and the unfolding circuit can be simplified to reduce the conduction losses. High-frequency switching is only performed in one metal-oxide-semiconductor field-effect transistor (MOSFET) in each mode, which can effectively improve conversion efficiency. A prototype was implemented to obtain experimental results and to prove the validity of the proposed circuit structure.


2020 ◽  
Vol 1 (2) ◽  
pp. 144-149
Author(s):  
Muldi Yuhendri ◽  
Randy Setiawan

Direct current (dc) voltage sources are one of the voltage sources most widely used for various purposes. Dc voltage can be obtained from a dc generator or by converting an ac voltage into a dc voltage using a power converter. There are several dc voltage levels that are commonly used by electrical and electronic equipment. To get a dc voltage that can be used for various equipment, then a dc voltage source must be varied according to the required. One way to get a variable dc voltage is to use a dc-dc converter. This research proposes a dc-dc boost converter that can increase the dc voltage with varying outputs. The boost converter is proposed using Arduino Uno as a controller with an input voltage of 12 volts. The converter output voltage regulation is implemented through Arduino programming using Matlab simulink. The experimental results show that the boost converter designed in this study has worked well as intended. This can be seen from the boost converter output voltage which is in accordance with the reference voltage entered in the Matlab simulink program


Author(s):  
Yuki Satake ◽  
Hiroyuki Furuya ◽  
Yohei Mochizuki ◽  
Yuji Fukaishi ◽  
Kohji Higuchi ◽  
...  

In recent years, improving of power factor and reducing harmonic distortion in electrical instruments are needed. In general, a current conduction mode boost converter is used for active PFC (Power Factor Correction). In a PFC boost converter, if a duty ratio, a load resistance and an input voltage are changed, the dynamic characteristics are varied greatly. This is the prime reason of difficulty of controlling the interleaved PFC boost converter. In this paper, a robust digital controller for suppressing the change of step response characteristics and variation of output voltage at a DC-DC buck converter load sudden change with high power factor and low harmonic is proposed. Experimental studies using a micro-processor for controller demonstrate that the proposed digital controller is effective to improve power factor and to suppress output voltage variation.


Sign in / Sign up

Export Citation Format

Share Document