Abstract 609: Plasma Carnitine is Associated with Gut Microbiome Composition, Diet, and Markers of Cardiometabolic Health

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Holly M Smith ◽  
Muredach P Reilly ◽  
Jane F Ferguson

Cardiometabolic health is influenced by both diet and gut microbiome composition, however mechanisms remain unclear. The dietary-derived metabolite carnitine has been of particular interest for its potential gut microbial-mediated relationship to atherosclerosis. Using plasma carnitine as an intermediate probe, we examined the relationship between diet, gut microbiome composition, circulating metabolite levels, and measurements of cardiometabolic health. Samples (blood, stool) and data (diet, anthropometrics) were collected from 136 healthy subjects. Purified stool 16S V4 DNA was sequenced (Illumina MiSeq, 300bp paired-end reads, ~150,000 reads/sample). Plasma carnitine was analyzed by mass spectrometry. There were several dietary components significantly associated with plasma carnitine, with an overall pattern of a diet rich in animal products and refined carbohydrates (dairy, processed meats, non-whole grains and starchy vegetables) associated with higher carnitine, while monounsaturated fat intake was associated with lower carnitine. Plasma carnitine was significantly negatively correlated with several bacterial genera including Blautia (r=-0.3 p=0.001), Parabacteroides (r=-0.2, p=0.03), and Coprococcus (r=-0.389, p<0.001). Carnitine levels above the median were associated with increases in cardiometabolic risk factors including higher systolic blood pressure (SBP, 118 vs 111 mmHg, p=0.014), BMI (27 vs. 24 kg/m 2 , p=0.002), waist-hip ratio (WHR, 0.85 vs 0.8, p=0.001) as well as higher levels of blood components associated with cardiovascular risk, including circulating monocytes (p=0.007) and hemoglobin (p=0.006). Both diet and microbiome composition also associated with several risk markers (WHR, SBP, hemoglobin), albeit to a lesser extent than plasma carnitine. In conclusion, we provide evidence for inter-related relationships between diet, microbiome composition, circulating metabolites, and markers of cardiometabolic health.

2021 ◽  
Author(s):  
Xinyue Zhang ◽  
Kun Guo ◽  
Linjing Shi ◽  
Ting Sun ◽  
Songmei Geng

Abstract Background: Psoriasis is an inflammatory skin disease associated with multiple comorbidities and substantially diminishes patients’ quality of life. The gut microbiome has become a hot topic in psoriasis as it has been shown to affect both allergy and autoimmunity diseases in recent studies. Our objective was to identify differences in the fecal microbial composition of patients with psoriasis compared with healthy individuals to unravel the microbiota profiling in this autoimmune disease.Results: We collected fecal samples from 30 psoriasis patients and 30 healthy controls, sequenced them by 16S rRNA high-throughput sequencing, and identified the gut microbial composition using bioinformatic analyses including Quantitative Insights into Microbial Ecology (QIIME) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Our results showed that different relative abundance of certain bacterial taxa between psoriasis patients and healthy individuals, including Faecalibacterium and Megamonas, were increased in patients with psoriasis. It’s also implicated that many cytokines act as main effect molecules in the pathology of psoriasis. We selected the inflammation-related indicators that were abnormal in psoriasis patients and found the microbiome variations were associated with the level of them, especially interleukin-2 receptor showed a positive relationship with Phascolarctobacterium and a negative relationship with the dialister. The relative abundance of Phascolarctobacterium and dialister can be regard as predictors of psoriasis activity. The correlation analysis based on microbiota and Inflammation-related indicators showed that microbiota dysbiosis might induce an abnormal immune response in psoriasis. Conclusions: We concluded that the gut microbiome composition in psoriasis patients has been altered markedly and provides evidence to understand the relationship between gut microbiota and psoriasis. More mechanistic experiments are needed to determine whether the differences observed in gut microbiota are the cause or consequences of psoriasis and whether the relationship between gut microbiota and cytokines was involved.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 148
Author(s):  
Anna Padula ◽  
Marina Bambi ◽  
Chiara Mengoni ◽  
Claudia Greco ◽  
Nadia Mucci ◽  
...  

This study aimed to characterise the gut microbiome composition of European hares (Lepus europaeus) and its potential changes after a short-term diet modification. The high sensitivity of European hare to habitat changes makes this species a good model to analyse possible alterations in gut microbiome after the introduction of additional nourishment into the diet. In total, 20 pairs were chosen for the experiments; 10 pairs formed the control group and were fed with standard fodder. The other 10 pairs represented the experimental group, whose diet was integrated with apples and carrots. The DNA from fresh faecal pellets collected after 4 days from the start of the experiment was extracted and the V3-V4 hypervariable regions were amplified and sequenced using the Illumina MiSeq® platform. The obtained amplicon sequence variants were classified into 735 bacterial genera belonging to 285 families and 36 phyla. The control and the experimental groups appeared to have a homogenous dispersion for the two taxonomic levels analysed with the most abundant phyla represented by Bacteroidetes and Firmicutes. No difference between control and experimental samples was detected, suggesting that the short-term variation in food availability did not alter the hares’ gut microbiome. Further research is needed to estimate significant time threshold.


Pathogens ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 57 ◽  
Author(s):  
Ulrich Desselberger

The mammalian gut is colonized by a large variety of microbes, collectively termed ‘the microbiome’. The gut microbiome undergoes rapid changes during the first few years of life and is highly variable in adulthood depending on various factors. With the gut being the largest organ of immune responses, the composition of the microbiome of the gut has been found to be correlated with qualitative and quantitative differences of mucosal and systemic immune responses. Animal models have been very useful to unravel the relationship between gut microbiome and immune responses and for the understanding of variations of immune responses to vaccination in different childhood populations. However, the molecular mechanisms underlying optimal immune responses to infection or vaccination are not fully understood. The gut virome and gut bacteria can interact, with bacteria facilitating viral infectivity by different mechanisms. Some gut bacteria, which have a beneficial effect on increasing immune responses or by overgrowing intestinal pathogens, are considered to act as probiotics and can be used for therapeutic purposes (as in the case of fecal microbiome transplantation).


2021 ◽  
pp. 1-12
Author(s):  
Molly Fox ◽  
S. Melanie Lee ◽  
Kyle S. Wiley ◽  
Venu Lagishetty ◽  
Curt A. Sandman ◽  
...  

Abstract Perturbations to the gut microbiome are implicated in altered neurodevelopmental trajectories that may shape life span risk for emotion dysregulation and affective disorders. However, the sensitive periods during which the microbiome may influence neurodevelopment remain understudied. We investigated relationships between gut microbiome composition across infancy and temperament at 12 months of age. In 67 infants, we examined if gut microbiome composition assessed at 1–3 weeks, 2, 6, and 12 months of age was associated with temperament at age 12 months. Stool samples were sequenced using the 16S Illumina MiSeq platform. Temperament was assessed using the Infant Behavior Questionnaire-Revised (IBQ-R). Beta diversity at age 1–3 weeks was associated with surgency/extraversion at age 12 months. Bifidobacterium and Lachnospiraceae abundance at 1–3 weeks of age was positively associated with surgency/extraversion at age 12 months. Klebsiella abundance at 1–3 weeks was negatively associated with surgency/extraversion at 12 months. Concurrent composition was associated with negative affectivity at 12 months, including a positive association with Ruminococcus-1 and a negative association with Lactobacillus. Our findings support a relationship between gut microbiome composition and infant temperament. While exploratory due to the small sample size, these results point to early and late infancy as sensitive periods during which the gut microbiome may exert effects on neurodevelopment.


2021 ◽  
Vol 6 (3) ◽  
pp. 259-268
Author(s):  
V. Yu. Kornienko ◽  
M. Yu. Minaev

The paper presents a review of available data about an effect of food additives on the human microbiome and lists the main physiological functions of the gut microbiome. The process of the human microbiome evolution is examined. The relationship between the emergence of a disease and the microbiome composition, as well as the main factors influencing the gut microbiome composition are described. The main food additives used today are listed, their key features are discussed and their structural formulas are given. The information about their effect on the human body through an influence on the microbiome composition is presented. The data on an effect of polysorbate 80, carboxymethylcellulose, sodium sulfite, nisin, potassium sorbate, sodium benzoate, sodium nitrate, essential oils, titanium dioxide and different sweeteners on the microbiome are analyzed. It is explained what microbial communities are suppressed and what communities gain advantages in multiplication when consumers eat food with one or another food additive. The consequences of alterations in the microbiome for the consumer’s body are examined. Conclusions were made about the necessity of additional studies about an effect of food additives on the composition of the human microbiome.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad U. Sohail ◽  
Hebah A. Al Khatib ◽  
Asmaa A. Al Thani ◽  
Khalid Al Ansari ◽  
Hadi M. Yassine ◽  
...  

Abstract Background Rotavirus (RV) is a leading cause of pediatric diarrhea and mortality worldwide. The virus causes acute gastroenteritis characterized by moderate to severe vomiting, diarrhea, dehydration, and fever. Microbial dysbiosis caused by RV infection may significantly influence disease prognosis and the development of other chronic diseases. The gut microbiome plays a vital role in enteric immune response for rotavirus vaccine (RVV) that requires further elucidations. The current study evaluates the gut microbiome of RV positive children and compares gastroenteritis manifestation in children admitted to the Pediatric Emergency Centre, Hamad Medical Cooperation, Doha, Qatar. Stool samples were collected from thirty-nine RV positive and eight healthy control children. 16S rRNA sequence was performed using the Illumina MiSeq platform. Results The data demonstrated a significant increase in microbiome diversity denoted by higher relative abundances of phylum Proteobacteria (p = 0.031), Fusobacteria (p = 0.044) and genus Streptococcus (p ≤ 0.001) in the infected group relative to the control. Similarly, district clustering pattern (PERMANOVA p = 0.01) and higher species richness (Shannon entropy p = 0.018) were observed in the children who received two RVV doses compared with the non-vaccinated or single-dose groups. These microbiome changes were represented by over-abundance of phylum Bacteroidetes (p = 0.003) and Verrucomicrobia (p ≤ 0.001), and lower expression of family Enterobacteriaceae in two RVV doses group. However, microbiome composition was not associated with diarrhea, vomiting, and other parameters of gastroenteritis. Conclusions The observations assert significant microbial signatures of RVV, which is dose-dependent, and suggest manipulating these microbes as a novel approach for improving RVV efficacy. Further studies are warranted to investigate the immune status of these patients and mechanistic investigation to enhance RVV seroconversion.


2019 ◽  
Vol 20 (12) ◽  
pp. 3109 ◽  
Author(s):  
Sarah Hirschberg ◽  
Barbara Gisevius ◽  
Alexander Duscha ◽  
Aiden Haghikia

Within the last century, human lifestyle and dietary behaviors have changed dramatically. These changes, especially concerning hygiene, have led to a marked decrease in some diseases, i.e., infectious diseases. However, other diseases that can be attributed to the so-called ‘Western’ lifestyle have increased, i.e., metabolic and cardiovascular disorders. More recently, multifactorial disorders, such as autoimmune and neurodegenerative diseases, have been associated with changes in diet and the gut microbiome. In particular, short chain fatty acid (SCFA)-producing bacteria are of high interest. SCFAs are the main metabolites produced by bacteria and are often reduced in a dysbiotic state, causing an inflammatory environment. Based on advanced technologies, high-resolution investigations of the abundance and composition of the commensal microbiome are now possible. These techniques enable the assessment of the relationship between the gut microbiome, its metabolome and gut-associated immune and neuronal cells. While a growing number of studies have shown the indirect impact of gut metabolites, mediated by alterations of immune-mediated mechanisms, the direct influence of these compounds on cells of the central nervous system needs to be further elucidated. For instance, the SCFA propionic acid (PA) increases the amount of intestine-derived regulatory T cells, which furthermore can positively affect the central nervous system (CNS), e.g., by increasing remyelination. However, the question of if and how PA can directly interact with CNS-resident cells is a matter of debate. In this review, we discuss the impact of an altered microbiome composition in relation to various diseases and discuss how the commensal microbiome is shaped, starting from the beginning of human life.


2020 ◽  
Author(s):  
Xinyue Zhang ◽  
Kun Guo ◽  
Linjing Shi ◽  
Ting Sun ◽  
Songmei Geng

Abstract Background Psoriasis is an inflammatory skin disease that is associated with multiple comorbidities and substantially diminishes patients’ quality of life. The gut microbiome has become a hot topic in psoriasis as it has been shown to have effect on both allergy and autoimmunity diseases in recent studies. Our objective was to identify differences in the faecal microbial composition of patients with psoriasis compared with healthy individuals in order to unravel the microbiota profiling in this autoimmune disease. Results We collected fecal samples from 30 psoriasis patients and 30 healthy controls and sequenced them by 16S rRNA high-throughput sequencing and identified the differences in the gut microbial composition between two groups through data analysis. Our results showed that different relative abundance of certain bacterial taxa between psoriasis patients and healthy individuals,including Faecalibacterium and Megamonas were increased in patients with psoriasis. It’s also implicated that many cytokines act as main effect molecules in the pathology of psoriasis. We selected the inflammation-related indicators that were abnormal in psoriasis patients and found the microbiome variations were associated with the level of them, especially interleukin-2 receptor showed a positive relationship with Phascolarctobacterium and a negative relationship with the Dialister. The correlation analysis based on microbiota and Inflammation-related indicators proved that microbiota dysbiosis might induce abnormal immune response in psoriasis. Conclusions We concluded that the gut microbiome composition in psoriasis patients has been altered markedly and provides evidence to understand the relationship between gut microbiota and psoriasis. More mechanistic experiments are needed to determine whether the differences observed in gut microbiota are the cause or consequences of psoriasis and whether the relationship between gut microbiota and cytokines was involved.


2022 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Scuderi ◽  
Emidio Troiani ◽  
Angelo Maria Minnella

The term microbiome means not only a complex ecosystem of microbial species that colonize our body but also their genome and the surrounding environment in which they live. Recent studies support the existence of a gut-retina axis involved in the pathogenesis of several chronic progressive ocular diseases, including age-related macular disorders. This review aims to underline the importance of the gut microbiome in relation to ocular health. After briefly introducing the characteristics of the gut microbiome in terms of composition and functions, the role of gut microbiome dysbiosis, in the development or progression of retinal diseases, is highlighted, focusing on the relationship between gut microbiome composition and retinal health based on the recently investigated gut-retina axis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xinyue Zhang ◽  
Linjing Shi ◽  
Ting Sun ◽  
Kun Guo ◽  
Songmei Geng

Abstract Background Psoriasis is an inflammatory skin disease associated with multiple comorbidities and substantially diminishes patients’ quality of life. The gut microbiome has become a hot topic in psoriasis as it has been shown to affect both allergy and autoimmunity diseases in recent studies. Our objective was to identify differences in the fecal microbial composition of patients with psoriasis compared with healthy individuals to unravel the microbiota profiling in this autoimmune disease. Results We collected fecal samples from 30 psoriasis patients and 30 healthy controls, sequenced them by 16S rRNA high-throughput sequencing, and identified the gut microbial composition using bioinformatic analyses including Quantitative Insights into Microbial Ecology (QIIME) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Our results showed that different relative abundance of certain bacterial taxa between psoriasis patients and healthy individuals, including Faecalibacterium and Megamonas, were increased in patients with psoriasis. It’s also implicated that many cytokines act as main effect molecules in the pathology of psoriasis. We selected the inflammation-related indicators that were abnormal in psoriasis patients and found the microbiome variations were associated with the level of them, especially interleukin-2 receptor showed a positive relationship with Phascolarctobacterium and a negative relationship with the Dialister. The relative abundance of Phascolarctobacterium and Dialister can be regard as predictors of psoriasis activity. The correlation analysis based on microbiota and Inflammation-related indicators showed that microbiota dysbiosis might induce an abnormal immune response in psoriasis. Conclusions We concluded that the gut microbiome composition in psoriasis patients has been altered markedly and provides evidence to understand the relationship between gut microbiota and psoriasis. More mechanistic experiments are needed to determine whether the differences observed in gut microbiota are the cause or consequences of psoriasis and whether the relationship between gut microbiota and cytokines was involved.


Sign in / Sign up

Export Citation Format

Share Document