scholarly journals Chronic 3D Vascular-Immune Interface Established by Coculturing Pressurized Resistance Arteries and Immune Cells

Author(s):  
Daniela Carnevale ◽  
Lorenzo Carnevale ◽  
Sara Perrotta ◽  
Fabio Pallante ◽  
Agnese Migliaccio ◽  
...  

Chronic exposure of the arterial vasculature to high blood pressure recruits immune cells and contributes to the vascular remodeling, dysfunction, and inflammation observed in hypertension. The mechanisms underlying the interaction between vascular and immune cells remain unknown, hampering the development of effective therapies targeting the vascular-immune interface. Overcoming these limitations requires a reliable, physiologically relevant experimental model of vascular-immune interface. By coculturing a 3-dimensional organ culture vascular system with immune cells of interest, we reproduced ex vivo the vascular-immune interface that occurs in hypertension. In the 3-dimensional vascular-immune interface model, CD8 but not CD4 T cells isolated from hypertensive mice increased the contractile properties of resistance arteries in naive mice, indicating that CD8 lymphocytes directly contribute to enhanced peripheral resistance in hypertension. RNA sequencing of CD8 lymphocytes isolated from prehypertensive mice revealed upregulation of gene pathways involved in chemotaxis, response to IFN-γ and other external stimuli, MAPK cascade activation, and positive regulation of intracellular calcium fluxes, as compared with CD4 T cells. Taken together, these results indicate that hypertensive stimuli program CD8 T cells toward a phenotype with promigratory properties that might account for their ability to enhance myogenic tone of resistance arteries when cocultured in the 3-dimensional system. Here, we demonstrate modeling a 3-dimensional organ culture vascular system that recapitulates the in vivo physiological properties of resistance arteries. This platform holds on a substantial translational potential, not only for hypertension but also for other cardiovascular diseases where vascular-immune interfaces are established and relevant for onset and progression of the disease.

2021 ◽  
Vol 67 (2) ◽  
pp. 95-101
Author(s):  
Monica Vuță ◽  
Ionela-Maria Cotoi ◽  
Ion Bogdan Mănescu ◽  
Doina Ramona Manu ◽  
Minodora Dobreanu

Abstract Objective: In vitro cytokine production by peripheral blood mononuclear cells (PBMCs) is an important and reliable measure of immunocompetence. PBMC can be stimulated directly after isolation or frozen for later use. However, cryopreservation may affect cell recovery, viability and functionality. This study aims to investigate cytokine synthesis in ex-vivo stimulated fresh and cryopreserved CD4+ and CD4- T cells. Methods: PBMCs were obtained by Ficoll gradient centrifugation from heparinized peripheral blood of 6 middle-aged clinically healthy subjects. Half of these cells (labeled “Fresh”) was further processed and the other half (labeled “Cryo”) was cryopreserved at -140°C for up to 3 months. Fresh-PBMCs were activated with Phorbol-Myristate-Acetate/Ionomycin/Monensin for 5 hours immediately after isolation while Cryo-PBMCs were identically activated after thawing and cell resting. Activated cells were fixed, permeabilized and intracellular cytokine staining was performed using Phycoerythrin (PE)-conjugated antibodies for Interleukin-2 (IL-2), Tumor Necrosis Factor-alpha (TNF-a), and Interferon-gamma (IFN-g). All samples were analyzed within 24 hours by flow cytometry. Results: Both Fresh and Cryo CD3+CD4+/CD3+CD4- sub-populations partially produced each of the three cytokines. A higher percentage of CD4+ T cells produced IL-2 and TNF-a and a greater percentage of CD4- T cells were found to produce IFN-g. A significantly higher percentage of Cryo-lymphocytes was shown to produce TNF-a in both CD3+CD4+ (31.4% vs 24.9%, p=0.031) and CD3+CD4- (22.7% vs 17.9%, p=0.031) subpopulations. No notable difference was found for IL-2 and IFN-g production between Fresh and Cryo T cells. Conclusion: Cryopreservation for up to 3 months significantly increases TNF-a production of T-cells in clinically healthy middle-aged subjects.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


2018 ◽  
Author(s):  
Nicholas Borcherding ◽  
Kawther K. Ahmed ◽  
Andrew P. Voigt ◽  
Ajaykumar Vishwakarma ◽  
Ryan Kolb ◽  
...  

Regulatory T cells (Tregs) are a population of T cells that exert a suppressive effect on a variety of immune cells and non-immune cells. The suppressive effects of Tregs are detrimental to anti-tumor immunity. Recent investigations into cancer-associated Tregs have identified common expression patterns for tumor-infiltration, however the functional heterogeneity in tumor-infiltrating (TI) Treg is largely unknown. We performed single-cell sequencing on immune cells derived from renal clear cell carcinoma (ccRCC) patients, isolating 160 peripheral-blood (PB) Tregs and 574 TI Tregs. We identified distinct transcriptional TI Treg cell fates, with a suppressive subset expressing CD177. We demonstrate CD177+ TI-Tregs have preferential suppressive effects in vivo and ex vivo. Gene signatures derived the CD177+ Treg subset had superior ability to predict survival in ccRCC and seven other cancer types. Further investigation into the development and regulation of TI-Treg heterogeneity will be vital to the application of tumor immunotherapies that possess minimal side effects.


2016 ◽  
Vol 213 (11) ◽  
pp. 2413-2435 ◽  
Author(s):  
Yi Wang ◽  
Cindy S. Ma ◽  
Yun Ling ◽  
Aziz Bousfiha ◽  
Yildiz Camcioglu ◽  
...  

Combined immunodeficiency (CID) refers to inborn errors of human T cells that also affect B cells because of the T cell deficit or an additional B cell–intrinsic deficit. In this study, we report six patients from three unrelated families with biallelic loss-of-function mutations in RLTPR, the mouse orthologue of which is essential for CD28 signaling. The patients have cutaneous and pulmonary allergy, as well as a variety of bacterial and fungal infectious diseases, including invasive tuberculosis and mucocutaneous candidiasis. Proportions of circulating regulatory T cells and memory CD4+ T cells are reduced. Their CD4+ T cells do not respond to CD28 stimulation. Their CD4+ T cells exhibit a "Th2" cell bias ex vivo and when cultured in vitro, contrasting with the paucity of "Th1," "Th17," and T follicular helper cells. The patients also display few memory B cells and poor antibody responses. This B cell phenotype does not result solely from the T cell deficiency, as the patients’ B cells fail to activate NF-κB upon B cell receptor (BCR) stimulation. Human RLTPR deficiency is a CID affecting at least the CD28-responsive pathway in T cells and the BCR-responsive pathway in B cells.


2004 ◽  
Vol 78 (13) ◽  
pp. 7284-7287 ◽  
Author(s):  
Michaela Lucas ◽  
Cheryl L. Day ◽  
Jessica R. Wyer ◽  
Sharon L. Cunliffe ◽  
Andrew Loughry ◽  
...  

ABSTRACT Recent advances in class II tetramer staining technology have allowed reliable direct ex vivo visualization of antigen-specific CD4 T cells. In order to define the frequency and phenotype of a prototype response to a nonpersistent pathogen, we have used such techniques to analyze influenza virus-specific memory CD4 T cells directly from blood. These responses are stably detectable ex vivo at low frequencies (range, 0.00012 to 0.0061% of CD4 T cells) and display a distinct “central memory” CD62L+ phenotype.


2020 ◽  
Vol 8 (2) ◽  
pp. 176 ◽  
Author(s):  
Yann Sellier ◽  
Florence Marliot ◽  
Bettina Bessières ◽  
Julien Stirnemann ◽  
Ferechte Encha-Razavi ◽  
...  

Background: The understanding of the pathogenesis of cytomegalovirus (CMV)-induced fetal brain lesions is limited. We aimed to quantify adaptive and innate immune cells and CMV-infected cells in fetal brains with various degrees of brain damage. Methods: In total, 26 archived embedded fetal brains were studied, of which 21 were CMV-infected and classified in severely affected (n = 13) and moderately affected (n = 8), and 5 were uninfected controls. The respective magnitude of infected cells, immune cells (CD8+, B cells, plasma cells, NK cells, and macrophages), and expression of immune checkpoint receptors (PD-1/PD-L1 and LAG-3) were measured by immunochemistry and quantified by quantitative imaging analysis. Results: Quantities of CD8+, plasma cells, NK cells, macrophages, and HCMV+ cells and expression of PD-1/PD-L1 and LAG-3 were significantly higher in severely affected than in moderately affected brains (all p values < 0.05). A strong link between higher number of stained cells for HCMV/CD8 and PD-1 and severity of brain lesions was found by component analysis. Conclusions: The higher expression of CD8, PD-1, and LAG-3 in severely affected brains could reflect immune exhaustion of cerebral T cells. These exhausted T cells could be ineffective in controlling viral multiplication itself, leading to more severe brain lesions. The study of the functionality of brain leucocytes ex vivo is needed to confirm this hypothesis.


2009 ◽  
Vol 83 (11) ◽  
pp. 5693-5707 ◽  
Author(s):  
Hua Liang ◽  
Rodney S. Russell ◽  
Nicole L. Yonkers ◽  
David McDonald ◽  
Benigno Rodriguez ◽  
...  

ABSTRACT Dendritic cells (DCs) are reported to be functionally deficient during chronic hepatitis C virus (HCV) infection. Differing results have been reported on direct effects of intact replicative-form HCV on DC function. To better understand the effect of HCV on DC function, we treated freshly purified human myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) with HCV JFH1. We found that HCV upregulated mDC maturation marker (CD83, CD86, and CD40) expression and did not inhibit Toll-like receptor 3 (TLR3) ligand [poly(I:C)]-induced mDC maturation, a finding consistent with the phenotype of DCs from HCV-infected subjects. At the same time, HCV JFH1 inhibited the ability of poly(I:C)-treated mDCs to activate naive CD4 T cells. In contrast, although there was no direct effect of virus on pDC maturation, HCV JFH1 inhibited TLR7 ligand (R848)-induced pDC CD40 expression, and this was associated with impaired ability to activate naive CD4 T cells. Parallel experiments with recombinant HCV proteins indicated HCV core protein may be responsible for a portion of the activity. Furthermore, HCV-mediated mDC maturation was dependent upon CD81-E2 interaction and, in part, TLR2. Using UV-treated HCV, we show that HCV-mediated mDC and pDC maturation is virus replication independent and, using strand specific PCR, we found no evidence for HCV replication within DCs. Because these effects of HCV on DC subset maturation and function in part recapitulate direct ex vivo analysis of DCs in chronic HCV infection, the mechanisms described here likely account for a portion of the DC subset defects observed in vivo.


2007 ◽  
Vol 82 (1) ◽  
pp. 471-486 ◽  
Author(s):  
R. Alvarez ◽  
J. Reading ◽  
D. F. L. King ◽  
M. Hayes ◽  
P. Easterbrook ◽  
...  

ABSTRACT Understanding why human immunodeficiency virus (HIV) preferentially infects some CD4+ CD45RO+ memory T cells has implications for antiviral immunity and pathogenesis. We report that differential expression of a novel secreted factor, ps20, previously implicated in tissue remodeling, may underlie why some CD4 T cells are preferentially targeted. We show that (i) there is a significant positive correlation between endogenous ps20 mRNA in diverse CD4 T-cell populations and in vitro infection, (ii) a ps20+ permissive cell can be made less permissive by antibody blockade- or small-interference RNA-mediated knockdown of endogenous ps20, and (iii) conversely, a ps20low cell can be more permissive by adding ps20 exogenously or engineering stable ps20 expression by retroviral transduction. ps20 expression is normally detectable in CD4 T cells after in vitro activation and interleukin-2 expansion, and such oligoclonal populations comprise ps20positive and ps20low/negative isogenic clones at an early differentiation stage (CD45RO+/CD25+/CD28+/CD57−). This pattern is altered in chronic HIV infection, where ex vivo CD4+ CD45RO+ T cells express elevated ps20. ps20 promoted HIV entry via fusion and augmented CD54 integrin expression; both of these effects were reversed by anti-ps20 antibody. We therefore propose ps20 to be a novel signature of HIV-permissive CD4 T cells that promotes infection in an autocrine and paracrine manner and that HIV has coopted a fundamental role of ps20 in promoting cell adhesion for its benefit. Disrupting the ps20 pathway may therefore provide a novel anti-HIV strategy.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hany Zekaria Meås ◽  
Markus Haug ◽  
Marianne Sandvold Beckwith ◽  
Claire Louet ◽  
Liv Ryan ◽  
...  

AbstractDuring HIV infection, cell-to-cell transmission results in endosomal uptake of the virus by target CD4+ T cells and potential exposure of the viral ssRNA genome to endosomal Toll-like receptors (TLRs). TLRs are instrumental in activating inflammatory responses in innate immune cells, but their function in adaptive immune cells is less well understood. Here we show that synthetic ligands of TLR8 boosted T cell receptor signaling, resulting in increased cytokine production and upregulation of surface activation markers. Adjuvant TLR8 stimulation, but not TLR7 or TLR9, further promoted T helper cell differentiation towards Th1 and Th17. In addition, we found that endosomal HIV induced cytokine secretion from CD4+ T cells in a TLR8-specific manner. TLR8 engagement also enhanced HIV-1 replication and potentiated the reversal of latency in patient-derived T cells. The adjuvant TLR8 activity in T cells can contribute to viral dissemination in the lymph node and low-grade inflammation in HIV patients. In addition, it can potentially be exploited for therapeutic targeting and vaccine development.


Sign in / Sign up

Export Citation Format

Share Document